Mathematics
         
语言:中文    Language:English
                                Equations   
Fold
                                Unary equation
                                Multivariate equation
                                Math OP  
Unfold
                                Linear algebra      
Unfold
                                Derivative function
                                Function image
                                Hot issues
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer
    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation 30000 = {150-20000/(x+20.4)}(x+10.2)+200(x+10.2) .
    Question type: Equation
    Solution:Original question:
     30000 = (15020000 ÷ ( x +
102
5
))( x +
51
5
) + 200( x +
51
5
)
    Remove a bracket on the right of the equation::
     30000 = 150( x +
51
5
)20000 ÷ ( x +
102
5
) × ( x +
51
5
) + 200( x +
51
5
)
     Multiply both sides of the equation by:( x +
102
5
)
     30000( x +
102
5
) = 150( x +
51
5
)( x +
102
5
)20000( x +
51
5
) + 200( x +
51
5
)( x +
102
5
)
    Remove a bracket on the left of the equation:
     30000 x + 30000 ×
102
5
= 150( x +
51
5
)( x +
102
5
)20000( x +
51
5
) + 200( x +
51
5
)( x +
102
5
)
    Remove a bracket on the right of the equation::
     30000 x + 30000 ×
102
5
= 150 x ( x +
102
5
) + 150 ×
51
5
( x +
102
5
)20000( x +
51
5
) + 200( x +
51
5
)( x +
102
5
)
    The equation is reduced to :
     30000 x + 612000 = 150 x ( x +
102
5
) + 1530( x +
102
5
)20000( x +
51
5
) + 200( x +
51
5
)( x +
102
5
)
    Remove a bracket on the right of the equation::
     30000 x + 612000 = 150 x x + 150 x ×
102
5
+ 1530( x +
102
5
)20000( x +
51
5
) + 200( x +
51
5
)
    The equation is reduced to :
     30000 x + 612000 = 150 x x + 3060 x + 1530( x +
102
5
)20000( x +
51
5
) + 200( x +
51
5
)( x +
102
5
)
    Remove a bracket on the right of the equation::
     30000 x + 612000 = 150 x x + 3060 x + 1530 x + 1530 ×
102
5
20000( x +
51
5
) + 200
    The equation is reduced to :
     30000 x + 612000 = 150 x x + 3060 x + 1530 x + 3121220000( x +
51
5
) + 200( x +
51
5
)
    The equation is reduced to :
     30000 x + 612000 = 150 x x + 4590 x + 3121220000( x +
51
5
) + 200( x +
51
5
)( x +
102
5
)
    Remove a bracket on the right of the equation::
     30000 x + 612000 = 150 x x + 4590 x + 3121220000 x 20000 ×
51
5
+ 200( x +
51
5
)
    The equation is reduced to :
     30000 x + 612000 = 150 x x + 4590 x + 3121220000 x 204000 + 200( x +
51
5
)( x +
102
5
)
    The equation is reduced to :
     30000 x + 612000 = 150 x x 15410 x 172788 + 200( x +
51
5
)( x +
102
5
)
    Remove a bracket on the right of the equation::
     30000 x + 612000 = 150 x x 15410 x 172788 + 200 x ( x +
102
5
) + 200 ×
51
5
( x +
102
5
)
    The equation is reduced to :
     30000 x + 612000 = 150 x x 15410 x 172788 + 200 x ( x +
102
5
) + 2040( x +
102
5
)
    Remove a bracket on the right of the equation::
     30000 x + 612000 = 150 x x 15410 x 172788 + 200 x x + 200 x ×
102
5
    The equation is reduced to :
     30000 x + 612000 = 150 x x 15410 x 172788 + 200 x x + 4080 x + 2040
    The equation is reduced to :
     30000 x + 612000 = 150 x x 11330 x 172788 + 200 x x + 2040( x +
102
5
)
    Remove a bracket on the right of the equation::
     30000 x + 612000 = 150 x x 11330 x 172788 + 200 x x + 2040 x + 2040
    The equation is reduced to :
     30000 x + 612000 = 150 x x 11330 x 172788 + 200 x x + 2040 x + 41616
    The equation is reduced to :
     30000 x + 612000 = 150 x x 9290 x 131172 + 200 x x

    The solution of the equation:
        x1≈-16.492122 , keep 6 decimal places
        x2≈128.749265 , keep 6 decimal places
    
    There are 2 solution(s).


解程的详细方法请参阅:《方程的解法》



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。