Mathematics
         
语言:中文    Language:English
                                Equations   
Fold
                                Unary equation
                                Multivariate equation
                                Math OP  
Unfold
                                Linear algebra      
Unfold
                                Derivative function
                                Function image
                                Hot issues
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer
    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation (x÷2.7)+[(374-x)÷7.9] = 100 .
    Question type: Equation
    Solution:Original question:
     ( x ÷
27
10
) + ((374 x ) ÷
79
10
) = 100
    Remove the bracket on the left of the equation:
     Left side of the equation = x ÷
27
10
+ ((374 x ) ÷
79
10
)
                                             =
10
27
x + (374 x ) ÷
79
10
                                             =
10
27
x + 374 ×
10
79
x ×
10
79
                                             =
10
27
x +
3740
79
x ×
10
79
                                             =
520
2133
x +
3740
79
    The equation is transformed into :
     
520
2133
x +
3740
79
= 100

    Transposition :
     
520
2133
x = 100
3740
79

    Combine the items on the right of the equation:
     
520
2133
x =
4160
79

    The coefficient of the unknown number is reduced to 1 :
      x =
4160
79
÷
520
2133
        =
4160
79
×
2133
520
        = 8 × 27

    We obtained :
      x = 216
    This is the solution of the equation.



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。