| ( | 164 | + | 434 | ) | ÷ | 31 | × | x | + | 155 | ÷ | 31 | × | ( | x | + | 15 | ) | + | 93 | ÷ | 31 | × | ( | x | + | 30 | ) | = | 773 |
| Left side of the equation = | ( | 164 | + | 434 | ) | × | 1 31 | x | + | 5 | ( | x | + | 15 | ) | + | 3 | ( | x | + | 30 | ) |
| ( | 164 | + | 434 | ) | × | 1 31 | x | + | 5 | ( | x | + | 15 | ) | + | 3 | ( | x | + | 30 | ) | = | 773 |
| Left side of the equation = | 164 | × | 1 31 | x | + | 434 | × | 1 31 | x | + | 5 | ( | x | + | 15 | ) | + | 3 | ( | x | + | 30 | ) |
| = | 164 31 | x | + | 14 | x | + | 5 | ( | x | + | 15 | ) | + | 3 | ( | x | + | 30 | ) |
| = | 598 31 | x | + | 5 | ( | x | + | 15 | ) | + | 3 | ( | x | + | 30 | ) |
| = | 598 31 | x | + | 5 | x | + | 5 | × | 15 | + | 3 | ( | x | + | 30 | ) |
| = | 598 31 | x | + | 5 | x | + | 75 | + | 3 | ( | x | + | 30 | ) |
| = | 753 31 | x | + | 75 | + | 3 | ( | x | + | 30 | ) |
| = | 753 31 | x | + | 75 | + | 3 | x | + | 3 | × | 30 |
| = | 753 31 | x | + | 75 | + | 3 | x | + | 90 |
| = | 846 31 | x | + | 165 |
846 31 | x | + | 165 | = | 773 |
846 31 | x | = | 773 | − | 165 |
846 31 | x | = | 608 |
| x | = | 608 | ÷ | 846 31 |
| = | 608 | × | 31 846 |
| = | 304 | × | 31 423 |
| x | = | 9424 423 |
| x | = | 22.27896 |