| ( | 155 | + | 779 2 | ) | ÷ | 31 | × | x | + | 152 | ÷ | 31 | × | ( | x | + | 15 | ) | + | 93 | ÷ | 31 | × | ( | x | + | 30 | ) | = | 1462 |
| Left side of the equation = | ( | 155 | + | 779 2 | ) | × | 1 31 | x | + | 152 31 | ( | x | + | 15 | ) | + | 3 | ( | x | + | 30 | ) |
| ( | 155 | + | 779 2 | ) | × | 1 31 | x | + | 152 31 | ( | x | + | 15 | ) | + | 3 | ( | x | + | 30 | ) | = | 1462 |
| Left side of the equation = | 155 | × | 1 31 | x | + | 779 2 | × | 1 31 | x | + | 152 31 | ( | x | + | 15 | ) | + | 3 | ( | x | + | 30 | ) |
| = | 5 | x | + | 779 62 | x | + | 152 31 | ( | x | + | 15 | ) | + | 3 | ( | x | + | 30 | ) |
| = | 1089 62 | x | + | 152 31 | ( | x | + | 15 | ) | + | 3 | ( | x | + | 30 | ) |
| = | 1089 62 | x | + | 152 31 | x | + | 152 31 | × | 15 | + | 3 | ( | x | + | 30 | ) |
| = | 1089 62 | x | + | 152 31 | x | + | 2280 31 | + | 3 | ( | x | + | 30 | ) |
| = | 1393 62 | x | + | 2280 31 | + | 3 | ( | x | + | 30 | ) |
| = | 1393 62 | x | + | 2280 31 | + | 3 | x | + | 3 | × | 30 |
| = | 1393 62 | x | + | 2280 31 | + | 3 | x | + | 90 |
| = | 1579 62 | x | + | 5070 31 |
1579 62 | x | + | 5070 31 | = | 1462 |
1579 62 | x | = | 1462 | − | 5070 31 |
1579 62 | x | = | 40252 31 |
| x | = | 40252 31 | ÷ | 1579 62 |
| = | 40252 31 | × | 62 1579 |
| = | 40252 | × | 2 1579 |
| x | = | 80504 1579 |
| x | = | 50.984167 |