| 1 | ÷ | x | + | 1 | ÷ | ( | 1 | + | x | ) | + | 1 | ÷ | ( | 3 | + | x | ) | = | 1 | ÷ | ( | 2 | + | x | ) |
| Multiply both sides of the equation by: | x | , | ( | 2 | + | x | ) |
| 1 | ( | 2 | + | x | ) | + | 1 | ÷ | ( | 1 | + | x | ) | × | x | ( | 2 | + | x | ) | + | 1 | ÷ | ( | 3 | + | x | ) | × | x | ( | 2 | + | x | ) | = | 1 | x |
| 1 | × | 2 | + | 1 | x | + | 1 | ÷ | ( | 1 | + | x | ) | × | x | ( | 2 | + | x | ) | + | 1 | ÷ | ( | 3 | + | x | ) | × | x | ( | 2 | + | x | ) | = | 1 | x |
| 2 | + | 1 | x | + | 1 | ÷ | ( | 1 | + | x | ) | × | x | ( | 2 | + | x | ) | + | 1 | ÷ | ( | 3 | + | x | ) | × | x | ( | 2 | + | x | ) | = | 1 | x |
| Multiply both sides of the equation by: | ( | 1 | + | x | ) |
| 2 | ( | 1 | + | x | ) | + | 1 | x | ( | 1 | + | x | ) | + | 1 | x | ( | 2 | + | x | ) | + | 1 | ÷ | ( | 3 | + | x | ) | × | x | ( | 2 | + | x | ) | = | 1 | x | ( | 1 | + | x | ) |
| 2 | × | 1 | + | 2 | x | + | 1 | x | ( | 1 | + | x | ) | + | 1 | x | ( | 2 | + | x | ) | + | 1 | ÷ | ( | 3 | + | x | ) | = | 1 | x | ( | 1 | + | x | ) |
| 2 | × | 1 | + | 2 | x | + | 1 | x | ( | 1 | + | x | ) | + | 1 | x | ( | 2 | + | x | ) | + | 1 | ÷ | ( | 3 | + | x | ) | = | 1 | x | × | 1 | + | 1 | x | x |
| 2 | + | 2 | x | + | 1 | x | ( | 1 | + | x | ) | + | 1 | x | ( | 2 | + | x | ) | + | 1 | ÷ | ( | 3 | + | x | ) | × | x | = | 1 | x | + | 1 | x | x |
| Multiply both sides of the equation by: | ( | 3 | + | x | ) |
| 2 | ( | 3 | + | x | ) | + | 2 | x | ( | 3 | + | x | ) | + | 1 | x | ( | 1 | + | x | ) | ( | 3 | + | x | ) | + | 1 | x | ( | 2 | + | x | ) | = | 1 | x | ( | 3 | + | x | ) | + | 1 | x | x | ( | 3 | + | x | ) |
| 2 | × | 3 | + | 2 | x | + | 2 | x | ( | 3 | + | x | ) | + | 1 | x | ( | 1 | + | x | ) | ( | 3 | + | x | ) | + | 1 | = | 1 | x | ( | 3 | + | x | ) | + | 1 | x | x | ( | 3 | + | x | ) |
| 2 | × | 3 | + | 2 | x | + | 2 | x | ( | 3 | + | x | ) | + | 1 | x | ( | 1 | + | x | ) | ( | 3 | + | x | ) | + | 1 | = | 1 | x | × | 3 | + | 1 | x | x | + | 1 | x | x | ( | 3 | + | x | ) |
| 6 | + | 2 | x | + | 2 | x | ( | 3 | + | x | ) | + | 1 | x | ( | 1 | + | x | ) | ( | 3 | + | x | ) | + | 1 | x | = | 3 | x | + | 1 | x | x | + | 1 | x | x | ( | 3 | + | x | ) |
| 6 | + | 2 | x | + | 2 | x | × | 3 | + | 2 | x | x | + | 1 | x | ( | 1 | + | x | ) | = | 3 | x | + | 1 | x | x | + | 1 | x | x | ( | 3 | + | x | ) |
| 6 | + | 2 | x | + | 2 | x | × | 3 | + | 2 | x | x | + | 1 | x | ( | 1 | + | x | ) | = | 3 | x | + | 1 | x | x | + | 1 | x | x | × | 3 | + | 1 | x | x |
| 6 | + | 2 | x | + | 6 | x | + | 2 | x | x | + | 1 | x | ( | 1 | + | x | ) | ( | 3 | + | x | ) | = | 3 | x | + | 1 | x | x | + | 3 | x | x | + | 1 | x | x | x |
| 6 | + | 8 | x | + | 2 | x | x | + | 1 | x | ( | 1 | + | x | ) | ( | 3 | + | x | ) | + | 1 | x | = | 3 | x | + | 1 | x | x | + | 3 | x | x | + | 1 | x | x | x |
| 6 | + | 8 | x | + | 2 | x | x | + | 1 | x | × | 1 | ( | 3 | + | x | ) | + | 1 | x | = | 3 | x | + | 1 | x | x | + | 3 | x | x | + | 1 | x | x | x |
| 6 | + | 8 | x | + | 2 | x | x | + | 1 | x | ( | 3 | + | x | ) | + | 1 | x | x | = | 3 | x | + | 1 | x | x | + | 3 | x | x | + | 1 | x | x | x |
| 6 | + | 8 | x | + | 2 | x | x | + | 1 | x | × | 3 | + | 1 | x | x | = | 3 | x | + | 1 | x | x | + | 3 | x | x | + | 1 | x | x | x |
| 6 | + | 8 | x | + | 2 | x | x | + | 3 | x | + | 1 | x | x | + | 1 | = | 3 | x | + | 1 | x | x | + | 3 | x | x | + | 1 | x | x | x |
| 6 | + | 11 | x | + | 2 | x | x | + | 1 | x | x | + | 1 | x | x | = | 3 | x | + | 1 | x | x | + | 3 | x | x | + | 1 | x | x | x |
| 6 | + | 11 | x | + | 2 | x | x | + | 1 | x | x | + | 1 | x | x | = | 3 | x | + | 1 | x | x | + | 3 | x | x | + | 1 | x | x | x |