Mathematics
         
语言:中文    Language:English
                                Equations   
Fold
                                Unary equation
                                Multivariate equation
                                Math OP  
Unfold
                                Linear algebra      
Unfold
                                Derivative function
                                Function image
                                Hot issues
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer
    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation x*1500-(600*x+400)-(1500*x*0.13-80*x)*0.09 = 0 .
    Question type: Equation
    Solution:Original question:
      x × 1500(600 x + 400)(1500 x ×
13
100
80 x ) ×
9
100
= 0
    Remove the bracket on the left of the equation:
     Left side of the equation = 1500 x 600 x 400(1500 x ×
13
100
80 x ) ×
9
100
                                             = 900 x 400(1500 x ×
13
100
80 x ) ×
9
100
                                             = 900 x 4001500 x ×
13
100
×
9
100
+ 80 x ×
9
100
                                             = 900 x 400
351
20
x +
36
5
x
                                             =
17793
20
x 400
    The equation is transformed into :
     
17793
20
x 400 = 0

    Transposition :
     
17793
20
x = 0 + 400

    Combine the items on the right of the equation:
     
17793
20
x = 400

    The coefficient of the unknown number is reduced to 1 :
      x = 400 ÷
17793
20
        = 400 ×
20
17793

    We obtained :
      x =
8000
17793
    This is the solution of the equation.

    Convert the result to decimal form :
      x = 0.449615



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。