Mathematics
         
语言:中文    Language:English
                                Equations   
Fold
                                Unary equation
                                Multivariate equation
                                Math OP  
Unfold
                                Linear algebra      
Unfold
                                Derivative function
                                Function image
                                Hot issues
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer
    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation ((3.47-2.28)/130+x)*83 = 2.28 .
    Question type: Equation
    Solution:Original question:
     ((
347
100
57
25
) ÷ 130 + x ) × 83 =
57
25
    Remove the bracket on the left of the equation:
     Left side of the equation = (
347
100
57
25
) ÷ 130 × 83 + x × 83
                                             = (
347
100
57
25
) ×
83
130
+ x × 83
                                             =
347
100
×
83
130
57
25
×
83
130
+ 83 x
                                             =
28801
13000
4731
3250
+ 83 x
                                             =
9877
13000
+ 83 x
    The equation is transformed into :
     
9877
13000
+ 83 x =
57
25

    Transposition :
     83 x =
57
25
9877
13000

    Combine the items on the right of the equation:
     83 x =
19763
13000

    The coefficient of the unknown number is reduced to 1 :
      x =
19763
13000
÷ 83
        =
19763
13000
×
1
83

    We obtained :
      x =
19763
1079000
    This is the solution of the equation.

    Convert the result to decimal form :
      x = 0.018316



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。