Mathematics
         
语言:中文    Language:English
                                Equations   
Fold
                                Unary equation
                                Multivariate equation
                                Math OP  
Unfold
                                Linear algebra      
Unfold
                                Derivative function
                                Function image
                                Hot issues
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer
    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation 3.9102 = ((22.6*0.575(x+0.1))/(1+0.575(x+0.1))*((100-11.7-1.52)/100)*(1/(1+0.31*1.52)+((3.45(x+0.1))/(1.4*0.101325)) ) ) .
    Question type: Equation
    Solution:Original question:
     
19551
5000
= ((
113
5
×
23
40
( x +
1
10
)) ÷ (1 +
23
40
( x +
1
10
)) × ((100
117
10
38
25
) ÷ 100)(1 ÷ (1 +
31
100
×
38
25
) + ((
69
20
( x +
1
10
)) ÷ (
7
5
×
4053
40000
))))
    Remove a bracket on the right of the equation::
     
19551
5000
= (
113
5
×
23
40
( x +
1
10
)) ÷ (1 +
23
40
( x +
1
10
)) × ((100
117
10
38
25
) ÷ 100)(1 ÷ (1 +
31
100
×
38
25
) + ((
69
20
( x +
1
10
)) ÷ (
7
5
×
4053
40000
)))
     Multiply both sides of the equation by:(1 +
23
40
( x +
1
10
))
     
19551
5000
(1 +
23
40
( x +
1
10
)) = (
113
5
×
23
40
( x +
1
10
))((100
117
10
38
25
) ÷ 100)(1 ÷ (1 +
31
100
×
38
25
) + ((
69
20
( x +
1
10
)) ÷ (
7
5
×
4053
40000
)))
    Remove a bracket on the left of the equation:
     
19551
5000
× 1 +
19551
5000
×
23
40
( x +
1
10
) = (
113
5
×
23
40
( x +
1
10
))((100
117
10
38
25
) ÷ 100)(1 ÷ (1 +
31
100
×
38
25
) + ((
69
20
( x +
1
10
)) ÷ (
7
5
×
4053
40000
)))
    Remove a bracket on the right of the equation::
     
19551
5000
× 1 +
19551
5000
×
23
40
( x +
1
10
) =
113
5
×
23
40
( x +
1
10
)((100
117
10
38
25
) ÷ 100)(1 ÷ (1 +
31
100
×
38
25
) + ((
69
20
( x +
1
10
)) ÷ (
7
5
×
4053
40000
)))
    The equation is reduced to :
     
19551
5000
+
449673
200000
( x +
1
10
) =
2599
200
( x +
1
10
)((100
117
10
38
25
) ÷ 100)(1 ÷ (1 +
31
100
×
38
25
) + ((
69
20
( x +
1
10
)) ÷ (
7
5
×
4053
40000
)))
    Remove a bracket on the left of the equation:
     
19551
5000
+
449673
200000
x +
449673
200000
×
1
10
=
2599
200
( x +
1
10
)((100
117
10
38
25
) ÷ 100)(1 ÷ (1 +
31
100
×
38
25
) + ((
69
20
( x +
1
10
)) ÷ (
7
5
×
4053
40000
)))
    Remove a bracket on the right of the equation::
     
19551
5000
+
449673
200000
x +
449673
200000
×
1
10
=
2599
200
x ((100
117
10
38
25
) ÷ 100)(1 ÷ (1 +
31
100
×
38
25
) + ((
69
20
( x +
1
10
)) ÷ (
7
5
×
4053
40000
))) +
2599
200
×
1
10
((100
117
10
38
25
) ÷ 100)(1 ÷ (1 +
31
100
×
38
25
) + ((
69
20
( x +
1
10
)) ÷ (
7
5
×
4053
40000
)))
    The equation is reduced to :
     
19551
5000
+
449673
200000
x +
449673
2000000
=
2599
200
x ((100
117
10
38
25
) ÷ 100)(1 ÷ (1 +
31
100
×
38
25
) + ((
69
20
( x +
1
10
)) ÷ (
7
5
×
4053
40000
))) +
2599
2000
((100
117
10
38
25
) ÷ 100)(1 ÷ (1 +
31
100
×
38
25
) + ((
69
20
( x +
1
10
)) ÷ (
7
5
×
4053
40000
)))

    The solution of the equation:
        x1≈-1.839130 , keep 6 decimal places
        x2≈0.621859 , keep 6 decimal places
    
    There are 2 solution(s).


解程的详细方法请参阅:《方程的解法》



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。