Mathematics
         
语言:中文    Language:English
                                Equations   
Fold
                                Unary equation
                                Multivariate equation
                                Math OP  
Unfold
                                Linear algebra      
Unfold
                                Derivative function
                                Function image
                                Hot issues
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer
    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation x+(x/1.09*0.09-4800000/1.03*0.03)*1.12+(x/1.09-4800000/1.03)*0.25 = 11800000 .
    Question type: Equation
    Solution:Original question:
      x + ( x ÷
109
100
×
9
100
4800000 ÷
103
100
×
3
100
) ×
28
25
+ ( x ÷
109
100
4800000 ÷
103
100
) ×
1
4
= 11800000
    Remove the bracket on the left of the equation:
     Left side of the equation = x + x ÷
109
100
×
9
100
×
28
25
4800000 ÷
103
100
×
3
100
×
28
25
+ ( x ÷
109
100
4800000 ÷
103
100
) ×
1
4
                                             = x + x ×
252
2725
16128000
103
+ ( x ÷
109
100
4800000 ÷
103
100
) ×
1
4
                                             =
2977
2725
x
16128000
103
+ ( x ÷
109
100
4800000 ÷
103
100
) ×
1
4
                                             =
2977
2725
x
16128000
103
+ x ÷
109
100
×
1
4
4800000 ÷
103
100
×
1
4
                                             =
2977
2725
x
16128000
103
+ x ×
25
109
120000000
103
                                             =
3602
2725
x
136128000
103
    The equation is transformed into :
     
3602
2725
x
136128000
103
= 11800000

    Transposition :
     
3602
2725
x = 11800000 +
136128000
103

    Combine the items on the right of the equation:
     
3602
2725
x =
1351528000
103

    The coefficient of the unknown number is reduced to 1 :
      x =
1351528000
103
÷
3602
2725
        =
1351528000
103
×
2725
3602
        =
675764000
103
×
2725
1801

    We obtained :
      x =
1841456900000
185503
    This is the solution of the equation.



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。