Mathematics
         
语言:中文    Language:English
                                Equations   
Fold
                                Unary equation
                                Multivariate equation
                                Math OP  
Unfold
                                Linear algebra      
Unfold
                                Derivative function
                                Function image
                                Hot issues
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer
    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation x = (0.772+0.11+0.13*2)/(0.772+0.11+0.13*2+20) .
    Question type: Equation
    Solution:Original question:
      x = (
193
250
+
11
100
+
13
100
× 2) ÷ (
193
250
+
11
100
+
13
100
× 2 + 20)
     Multiply both sides of the equation by:(
193
250
+
11
100
+
13
100
× 2 + 20)
      x (
193
250
+
11
100
+
13
100
× 2 + 20) = (
193
250
+
11
100
+
13
100
× 2)
    Remove a bracket on the left of the equation::
      x ×
193
250
+ x ×
11
100
+ x ×
13
100
× 2 + x × 20 = (
193
250
+
11
100
+
13
100
× 2)
    Remove a bracket on the right of the equation::
      x ×
193
250
+ x ×
11
100
+ x ×
13
100
× 2 + x × 20 =
193
250
+
11
100
+
13
100
× 2
    The equation is reduced to :
      x ×
193
250
+ x ×
11
100
+ x ×
13
50
+ x × 20 =
193
250
+
11
100
+
13
50
    The equation is reduced to :
     
10571
500
x =
571
500

    The coefficient of the unknown number is reduced to 1 :
      x =
571
500
÷
10571
500
        =
571
500
×
500
10571
        = 571 ×
1
10571

    We obtained :
      x =
571
10571
    This is the solution of the equation.

    Convert the result to decimal form :
      x = 0.054016



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。