Mathematics
         
语言:中文    Language:English
                                Equations   
Fold
                                Unary equation
                                Multivariate equation
                                Math OP  
Unfold
                                Linear algebra      
Unfold
                                Derivative function
                                Function image
                                Hot issues
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer
    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation 3.499*83.5+4*x = (83.5+x)*3.65 .
    Question type: Equation
    Solution:Original question:
     
3499
1000
×
167
2
+ 4 x = (
167
2
+ x ) ×
73
20
     Left side of the equation =
584333
2000
+ 4 x
    The equation is transformed into :
     
584333
2000
+ 4 x = (
167
2
+ x ) ×
73
20
    Remove the bracket on the right of the equation:
     Right side of the equation =
167
2
×
73
20
+ x ×
73
20
                                               =
12191
40
+ x ×
73
20
    The equation is transformed into :
     
584333
2000
+ 4 x =
12191
40
+
73
20
x

    Transposition :
     4 x
73
20
x =
12191
40
584333
2000

    Combine the items on the left of the equation:
     
7
20
x =
12191
40
584333
2000

    Combine the items on the right of the equation:
     
7
20
x =
25217
2000

    The coefficient of the unknown number is reduced to 1 :
      x =
25217
2000
÷
7
20
        =
25217
2000
×
20
7
        =
25217
100
×
1
7

    We obtained :
      x =
25217
700
    This is the solution of the equation.

    Convert the result to decimal form :
      x = 36.024286



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。