Mathematics
         
语言:中文    Language:English
                                Equations   
Fold
                                Unary equation
                                Multivariate equation
                                Math OP  
Unfold
                                Linear algebra      
Unfold
                                Derivative function
                                Function image
                                Hot issues
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer
    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation 1144567 = 1584x+(x-620)*1*12+(x-758)*1*5+(x-675)*4*5+(x-660)*1*6+(x-660)*3*5+(x-660)*1*5 .
    Question type: Equation
    Solution:Original question:
     1144567 = 1584 x + ( x 620) × 1 × 12 + ( x 758) × 1 × 5 + ( x 675) × 4 × 5 + ( x 660)
     Right side of the equation = 1584 x + ( x 620) × 12 + ( x 758) × 5 + ( x 675) × 20 + ( x 660) × 6 + ( x 660) × 15
    The equation is transformed into :
     1144567 = 1584 x + ( x 620) × 12 + ( x 758) × 5 + ( x 675) × 20 + ( x 660) × 6 + ( x 660) × 15
    Remove the bracket on the right of the equation:
     Right side of the equation = 1584 x + x × 12620 × 12 + ( x 758) × 5 + ( x 675) × 20 + ( x 660) × 6
                                               = 1584 x + x × 127440 + ( x 758) × 5 + ( x 675) × 20 + ( x 660) × 6 + ( x 660)
                                               = 1596 x 7440 + ( x 758) × 5 + ( x 675) × 20 + ( x 660) × 6 + ( x 660) × 15 + ( x 660)
                                               = 1596 x 7440 + x × 5758 × 5 + ( x 675) × 20 + ( x 660) × 6 + ( x 660)
                                               = 1596 x 7440 + x × 53790 + ( x 675) × 20 + ( x 660) × 6 + ( x 660) × 15
                                               = 1601 x 11230 + ( x 675) × 20 + ( x 660) × 6 + ( x 660) × 15 + ( x 660) × 5
                                               = 1601 x 11230 + x × 20675 × 20 + ( x 660) × 6 + ( x 660) × 15 + ( x 660)
                                               = 1601 x 11230 + x × 2013500 + ( x 660) × 6 + ( x 660) × 15 + ( x 660) × 5
                                               = 1621 x 24730 + ( x 660) × 6 + ( x 660) × 15 + ( x 660) × 5
                                               = 1621 x 24730 + x × 6660 × 6 + ( x 660) × 15 + ( x 660) × 5
                                               = 1621 x 24730 + x × 63960 + ( x 660) × 15 + ( x 660) × 5
                                               = 1627 x 28690 + ( x 660) × 15 + ( x 660) × 5
                                               = 1627 x 28690 + x × 15660 × 15 + ( x 660) × 5
                                               = 1627 x 28690 + x × 159900 + ( x 660) × 5
                                               = 1642 x 38590 + ( x 660) × 5
                                               = 1642 x 38590 + x × 5660 × 5
                                               = 1642 x 38590 + x × 53300
                                               = 1647 x 41890
    The equation is transformed into :
     1144567 = 1647 x 41890

    Transposition :
      - 1647 x = - 418901144567

    Combine the items on the right of the equation:
      - 1647 x = - 1186457

    By shifting the terms and changing the symbols on toth sides of the equation, we obtain :
     1186457 = 1647 x

    If the left side of the equation is equal to the right side, then the right side must also be equal to the left side, that is :
     1647 x = 1186457

    The coefficient of the unknown number is reduced to 1 :
      x = 1186457 ÷ 1647
        = 1186457 ×
1
1647

    We obtained :
      x =
1186457
1647
    This is the solution of the equation.

    Convert the result to decimal form :
      x = 720.374621



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。