169 2 | ÷ | ( | 1 | + | ( | x | ÷ | 12 | × | 6 | ) | ) | + | 13 40 | ÷ | ( | 1 | + | ( | x | ÷ | 12 | × | 13 | ) | ) | = | 3133 40 |
| Multiply both sides of the equation by: | ( | 1 | + | ( | x | ÷ | 12 | × | 6 | ) | ) |
169 2 | + | 13 40 | ÷ | ( | 1 | + | ( | x | ÷ | 12 | × | 13 | ) | ) | × | ( | 1 | + | ( | x | ÷ | 12 | × | 6 | ) | ) | = | 3133 40 | ( | 1 | + | ( | x | ÷ | 12 | × | 6 | ) | ) |
169 2 | + | 13 40 | ÷ | ( | 1 | + | ( | x | ÷ | 12 | × | 13 | ) | ) | × | 1 | + | 13 40 | ÷ | ( | 1 | + | ( | x | ÷ | 12 | × | 13 | ) | ) | × | ( | x | ÷ | 12 | × | 6 | ) | = | 3133 40 | ( | 1 | + | ( | x | ÷ | 12 | × | 6 | ) | ) |
169 2 | + | 13 40 | ÷ | ( | 1 | + | ( | x | ÷ | 12 | × | 13 | ) | ) | × | 1 | + | 13 40 | ÷ | ( | 1 | + | ( | x | ÷ | 12 | × | 13 | ) | ) | × | ( | x | ÷ | 12 | × | 6 | ) | = | 3133 40 | × | 1 | + | 3133 40 | ( | x | ÷ | 12 | × | 6 | ) |
169 2 | + | 13 40 | ÷ | ( | 1 | + | ( | x | ÷ | 12 | × | 13 | ) | ) | + | 13 40 | ÷ | ( | 1 | + | ( | x | ÷ | 12 | × | 13 | ) | ) | × | ( | x | ÷ | 12 | × | 6 | ) | = | 3133 40 | + | 3133 40 | ( | x | ÷ | 12 | × | 6 | ) |
| Multiply both sides of the equation by: | ( | 1 | + | ( | x | ÷ | 12 | × | 13 | ) | ) |
169 2 | ( | 1 | + | ( | x | ÷ | 12 | × | 13 | ) | ) | + | 13 40 | + | 13 40 | ÷ | ( | 1 | + | ( | x | ÷ | 12 | × | 13 | ) | ) | × | ( | x | ÷ | 12 | × | 6 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 13 | ) | ) | = | 3133 40 | ( | 1 | + | ( | x | ÷ | 12 | × | 13 | ) | ) | + | 3133 40 | ( | x | ÷ | 12 | × | 6 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 13 | ) | ) |
169 2 | × | 1 | + | 169 2 | ( | x | ÷ | 12 | × | 13 | ) | + | 13 40 | + | 13 40 | ÷ | ( | 1 | + | ( | x | ÷ | 12 | × | 13 | ) | ) | × | ( | x | ÷ | 12 | × | 6 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 13 | ) | ) | = | 3133 40 | ( | 1 | + | ( | x | ÷ | 12 | × | 13 | ) | ) | + | 3133 40 | ( | x | ÷ | 12 | × | 6 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 13 | ) | ) |
169 2 | × | 1 | + | 169 2 | ( | x | ÷ | 12 | × | 13 | ) | + | 13 40 | + | 13 40 | ÷ | ( | 1 | + | ( | x | ÷ | 12 | × | 13 | ) | ) | × | ( | x | ÷ | 12 | × | 6 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 13 | ) | ) | = | 3133 40 | × | 1 | + | 3133 40 | ( | x | ÷ | 12 | × | 13 | ) | + | 3133 40 | ( | x | ÷ | 12 | × | 6 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 13 | ) | ) |
169 2 | + | 169 2 | ( | x | ÷ | 12 | × | 13 | ) | + | 13 40 | + | 13 40 | ÷ | ( | 1 | + | ( | x | ÷ | 12 | × | 13 | ) | ) | × | ( | x | ÷ | 12 | × | 6 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 13 | ) | ) | = | 3133 40 | + | 3133 40 | ( | x | ÷ | 12 | × | 13 | ) | + | 3133 40 | ( | x | ÷ | 12 | × | 6 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 13 | ) | ) |
3393 40 | + | 169 2 | ( | x | ÷ | 12 | × | 13 | ) | + | 13 40 | ÷ | ( | 1 | + | ( | x | ÷ | 12 | × | 13 | ) | ) | × | ( | x | ÷ | 12 | × | 6 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 13 | ) | ) | = | 3133 40 | + | 3133 40 | ( | x | ÷ | 12 | × | 13 | ) | + | 3133 40 | ( | x | ÷ | 12 | × | 6 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 13 | ) | ) |
| Multiply both sides of the equation by: | ( | 1 | + | ( | x | ÷ | 12 | × | 13 | ) | ) |
3393 40 | ( | 1 | + | ( | x | ÷ | 12 | × | 13 | ) | ) | + | 169 2 | ( | x | ÷ | 12 | × | 13 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 13 | ) | ) | + | 13 40 | ( | x | ÷ | 12 | × | 6 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 13 | ) | ) | = | 3133 40 | ( | 1 | + | ( | x | ÷ | 12 | × | 13 | ) | ) | + | 3133 40 | ( | x | ÷ | 12 | × | 13 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 13 | ) | ) | + | 3133 40 | ( | x | ÷ | 12 | × | 6 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 13 | ) | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 13 | ) | ) |
3393 40 | × | 1 | + | 3393 40 | ( | x | ÷ | 12 | × | 13 | ) | + | 169 2 | ( | x | ÷ | 12 | × | 13 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 13 | ) | ) | + | 13 40 | ( | x | ÷ | 12 | × | 6 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 13 | ) | ) | = | 3133 40 | ( | 1 | + | ( | x | ÷ | 12 | × | 13 | ) | ) | + | 3133 40 | ( | x | ÷ | 12 | × | 13 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 13 | ) | ) | + | 3133 40 | ( | x | ÷ | 12 | × | 6 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 13 | ) | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 13 | ) | ) |
3393 40 | × | 1 | + | 3393 40 | ( | x | ÷ | 12 | × | 13 | ) | + | 169 2 | ( | x | ÷ | 12 | × | 13 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 13 | ) | ) | + | 13 40 | ( | x | ÷ | 12 | × | 6 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 13 | ) | ) | = | 3133 40 | × | 1 | + | 3133 40 | ( | x | ÷ | 12 | × | 13 | ) | + | 3133 40 | ( | x | ÷ | 12 | × | 13 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 13 | ) | ) | + | 3133 40 | ( | x | ÷ | 12 | × | 6 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 13 | ) | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 13 | ) | ) |
3393 40 | + | 3393 40 | ( | x | ÷ | 12 | × | 13 | ) | + | 169 2 | ( | x | ÷ | 12 | × | 13 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 13 | ) | ) | + | 13 40 | ( | x | ÷ | 12 | × | 6 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 13 | ) | ) | = | 3133 40 | + | 3133 40 | ( | x | ÷ | 12 | × | 13 | ) | + | 3133 40 | ( | x | ÷ | 12 | × | 13 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 13 | ) | ) | + | 3133 40 | ( | x | ÷ | 12 | × | 6 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 13 | ) | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 13 | ) | ) |
3393 40 | + | 3393 40 | x | ÷ | 12 | × | 13 | + | 169 2 | ( | x | ÷ | 12 | × | 13 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 13 | ) | ) | + | 13 40 | ( | x | ÷ | 12 | × | 6 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 13 | ) | ) | = | 3133 40 | + | 3133 40 | ( | x | ÷ | 12 | × | 13 | ) | + | 3133 40 | ( | x | ÷ | 12 | × | 13 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 13 | ) | ) | + | 3133 40 | ( | x | ÷ | 12 | × | 6 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 13 | ) | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 13 | ) | ) |
3393 40 | + | 3393 40 | x | ÷ | 12 | × | 13 | + | 169 2 | ( | x | ÷ | 12 | × | 13 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 13 | ) | ) | + | 13 40 | ( | x | ÷ | 12 | × | 6 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 13 | ) | ) | = | 3133 40 | + | 3133 40 | x | ÷ | 12 | × | 13 | + | 3133 40 | ( | x | ÷ | 12 | × | 13 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 13 | ) | ) | + | 3133 40 | ( | x | ÷ | 12 | × | 6 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 13 | ) | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 13 | ) | ) |
3393 40 | + | 14703 160 | x | + | 169 2 | ( | x | ÷ | 12 | × | 13 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 13 | ) | ) | + | 13 40 | ( | x | ÷ | 12 | × | 6 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 13 | ) | ) | = | 3133 40 | + | 40729 480 | x | + | 3133 40 | ( | x | ÷ | 12 | × | 13 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 13 | ) | ) | + | 3133 40 | ( | x | ÷ | 12 | × | 6 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 13 | ) | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 13 | ) | ) |
3393 40 | + | 14703 160 | x | + | 169 2 | x | ÷ | 12 | × | 13 | ( | 1 | + | ( | x | ÷ | 12 | × | 13 | ) | ) | + | 13 40 | ( | x | ÷ | 12 | × | 6 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 13 | ) | ) | = | 3133 40 | + | 40729 480 | x | + | 3133 40 | ( | x | ÷ | 12 | × | 13 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 13 | ) | ) | + | 3133 40 | ( | x | ÷ | 12 | × | 6 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 13 | ) | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 13 | ) | ) |
3393 40 | + | 14703 160 | x | + | 169 2 | x | ÷ | 12 | × | 13 | ( | 1 | + | ( | x | ÷ | 12 | × | 13 | ) | ) | + | 13 40 | ( | x | ÷ | 12 | × | 6 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 13 | ) | ) | = | 3133 40 | + | 40729 480 | x | + | 3133 40 | x | ÷ | 12 | × | 13 | ( | 1 | + | ( | x | ÷ | 12 | × | 13 | ) | ) | + | 3133 40 | ( | x | ÷ | 12 | × | 6 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 13 | ) | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 13 | ) | ) |
3393 40 | + | 14703 160 | x | + | 2197 24 | x | ( | 1 | + | ( | x | ÷ | 12 | × | 13 | ) | ) | + | 13 40 | ( | x | ÷ | 12 | × | 6 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 13 | ) | ) | = | 3133 40 | + | 40729 480 | x | + | 40729 480 | x | ( | 1 | + | ( | x | ÷ | 12 | × | 13 | ) | ) | + | 3133 40 | ( | x | ÷ | 12 | × | 6 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 13 | ) | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 13 | ) | ) |
3393 40 | + | 14703 160 | x | + | 2197 24 | x | × | 1 | + | 2197 24 | x | ( | x | ÷ | 12 | × | 13 | ) | + | 13 40 | ( | x | ÷ | 12 | × | 6 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 13 | ) | ) | = | 3133 40 | + | 40729 480 | x | + | 40729 480 | x | ( | 1 | + | ( | x | ÷ | 12 | × | 13 | ) | ) | + | 3133 40 | ( | x | ÷ | 12 | × | 6 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 13 | ) | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 13 | ) | ) |
3393 40 | + | 14703 160 | x | + | 2197 24 | x | × | 1 | + | 2197 24 | x | ( | x | ÷ | 12 | × | 13 | ) | + | 13 40 | ( | x | ÷ | 12 | × | 6 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 13 | ) | ) | = | 3133 40 | + | 40729 480 | x | + | 40729 480 | x | × | 1 | + | 40729 480 | x | ( | x | ÷ | 12 | × | 13 | ) | + | 3133 40 | ( | x | ÷ | 12 | × | 6 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 13 | ) | ) |
3393 40 | + | 14703 160 | x | + | 2197 24 | x | + | 2197 24 | x | ( | x | ÷ | 12 | × | 13 | ) | + | 13 40 | ( | x | ÷ | 12 | × | 6 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 13 | ) | ) | = | 3133 40 | + | 40729 480 | x | + | 40729 480 | x | + | 40729 480 | x | ( | x | ÷ | 12 | × | 13 | ) | + | 3133 40 | ( | x | ÷ | 12 | × | 6 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 13 | ) | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 13 | ) | ) |