| 18 | − | 1 2 | ( | 2 | v | ÷ | 3 | + | 125 | ÷ | 3 | × | v | − | 5 | ) | ( | 2 | v | ÷ | 3 | + | 125 | ÷ | 3 | × | v | − | 5 | ) | = | v | ( | 2 | v | ÷ | 3 | + | 50 | ÷ | 3 | × | v | − | 2 | ) | − | 5 4 | ( | 2 | v | ÷ | 3 | + | 50 | ÷ | 3 | × | v | − | 2 | ) | ( | 2 | v | ÷ | 3 | + | 50 | ÷ | 3 | × | v | − | 2 | ) |
| Left side of the equation = | 18 | − | 1 2 | × | 2 | v | ÷ | 3 | × | ( | 2 | v | ÷ | 3 | + | 125 | ÷ | 3 | × | v | − | 5 | ) | − | 1 2 | × | 125 | ÷ | 3 | × | v | ( | 2 | v | ÷ | 3 | + | 125 | ÷ | 3 | × | v | − | 5 | ) | + | 1 2 |
| = | 18 | − | 1 3 | v | ( | 2 | v | ÷ | 3 | + | 125 | ÷ | 3 | × | v | − | 5 | ) | − | 125 6 | v | ( | 2 | v | ÷ | 3 | + | 125 | ÷ | 3 | × | v | − | 5 | ) | + | 5 2 | ( | 2 | v | ÷ | 3 | + | 125 | ÷ | 3 | × | v | − | 5 | ) |
| = | 18 | − | 1 3 | v | × | 2 | v | ÷ | 3 | − | 1 3 | v | × | 125 | ÷ | 3 | × | v | + | 1 3 |
| = | 18 | − | 2 9 | v | v | − | 125 9 | v | v | + | 5 3 | v | − | 125 6 | v | ( | 2 | v | ÷ | 3 | + | 125 | ÷ | 3 | × | v | − | 5 | ) |
| = | 18 | − | 2 9 | v | v | − | 125 9 | v | v | + | 5 3 | v | − | 125 6 | v | × | 2 |
| = | 18 | − | 2 9 | v | v | − | 125 9 | v | v | + | 5 3 | v | − | 125 9 | v | v |
| = | 18 | − | 2 9 | v | v | − | 125 9 | v | v | + | 635 6 | v | − | 125 9 | v | v |
| = | 18 | − | 2 9 | v | v | − | 125 9 | v | v | + | 635 6 | v | − | 125 9 | v | v |
| = | 18 | − | 2 9 | v | v | − | 125 9 | v | v | + | 635 6 | v | − | 125 9 | v | v |
| = | 11 2 | − | 2 9 | v | v | − | 125 9 | v | v | + | 635 3 | v | − | 125 9 | v | v |
11 2 | − | 2 9 | v | v | − | 125 9 | v | v | + | 635 3 | v | − | 125 9 | v | v | = | v | ( | 2 | v | ÷ | 3 | + | 50 | ÷ | 3 | × | v | − | 2 | ) | − | 5 4 | ( | 2 | v | ÷ | 3 | + | 50 | ÷ | 3 | × | v | − | 2 | ) | ( | 2 | v | ÷ | 3 | + | 50 | ÷ | 3 | × | v | − | 2 | ) |
| Right side of the equation = | v | × | 2 | v | ÷ | 3 | + | v | × | 50 | ÷ | 3 | × | v | − | v | × | 2 | − | 5 4 | ( | 2 | v | ÷ | 3 | + | 50 | ÷ | 3 | × | v | − | 2 | ) |
| = | v | × | 2 3 | v | + | v | × | 50 3 | v | − | v | × | 2 | − | 5 4 | ( | 2 | v | ÷ | 3 | + | 50 | ÷ | 3 | × | v | − | 2 | ) | ( | 2 | v | ÷ | 3 | + | 50 | ÷ | 3 | × | v | − | 2 | ) |
| = | v | × | 2 3 | v | + | v | × | 50 3 | v | − | 2 | v | − | 5 4 | × | 2 | v | ÷ | 3 |
| = | v | × | 2 3 | v | + | v | × | 50 3 | v | − | 2 | v | − | 5 6 | v | ( | 2 | v | ÷ | 3 | + | 50 | ÷ | 3 | × | v | − | 2 | ) | − | 125 6 |
| = | v | × | 2 3 | v | + | v | × | 50 3 | v | − | 2 | v | − | 5 6 | v | × | 2 | v |
| = | v | × | 2 3 | v | + | v | × | 50 3 | v | − | 2 | v | − | 5 9 | v | v | − | 125 9 |
| = | v | × | 2 3 | v | + | v | × | 50 3 | v | − | 1 3 | v | − | 5 9 | v | v | − | 125 9 |
| = | v | × | 2 3 | v | + | v | × | 50 3 | v | − | 1 3 | v | − | 5 9 | v | v | − | 125 9 |
| = | v | × | 2 3 | v | + | v | × | 50 3 | v | − | 1 3 | v | − | 5 9 | v | v | − | 125 9 |
| = | v | × | 2 3 | v | + | v | × | 50 3 | v | + | 124 3 | v | − | 5 9 | v | v | − | 125 9 |
| = | v | × | 2 3 | v | + | v | × | 50 3 | v | + | 124 3 | v | − | 5 9 | v | v | − | 125 9 |
| = | v | × | 2 3 | v | + | v | × | 50 3 | v | + | 124 3 | v | − | 5 9 | v | v | − | 125 9 |
| = | v | × | 2 3 | v | + | v | × | 50 3 | v | + | 254 3 | v | − | 5 9 | v | v | − | 125 9 |
11 2 | − | 2 9 | v | v | − | 125 9 | v | v | + | 635 3 | v | − | 125 9 | v | v | = | v | × | 2 3 | v | + | v | × | 50 3 | v | + | 254 3 | v | − | 5 9 | v | v | − | 125 9 |
11 2 | − | 2 9 | v | v | − | 125 9 | v | v | + | 635 3 | v | − | 125 9 | v | v | = | v | × | 2 3 | v | + | v | × | 50 3 | v | + | 254 3 | v | − | 5 9 | v | v | − | 125 9 |