Mathematics
         
语言:中文    Language:English
                                Equations   
Fold
                                Unary equation
                                Multivariate equation
                                Math OP  
Unfold
                                Linear algebra      
Unfold
                                Derivative function
                                Function image
                                Hot issues
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer
    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation X+(X/1.01*0.01)+((X+(X/1.01*0.01))-800)*0.2 = 1400 .
    Question type: Equation
    Solution:Original question:
      X + ( X ÷
101
100
×
1
100
) + (( X + ( X ÷
101
100
×
1
100
))800) ×
1
5
= 1400
    Remove the bracket on the left of the equation:
     Left side of the equation = X + X ÷
101
100
×
1
100
+ (( X + ( X ÷
101
100
×
1
100
))800) ×
1
5
                                             = X + X ×
1
101
+ (( X + ( X ÷
101
100
×
1
100
))800) ×
1
5
                                             =
102
101
X + (( X + ( X ÷
101
100
×
1
100
))800) ×
1
5
                                             =
102
101
X + ( X + ( X ÷
101
100
×
1
100
)) ×
1
5
800 ×
1
5
                                             =
102
101
X + ( X + ( X ÷
101
100
×
1
100
)) ×
1
5
160
                                             =
102
101
X + X ×
1
5
+ ( X ÷
101
100
×
1
100
) ×
1
5
160
                                             =
611
505
X + ( X ÷
101
100
×
1
100
) ×
1
5
160
                                             =
611
505
X + X ÷
101
100
×
1
100
×
1
5
160
                                             =
611
505
X + X ×
1
505
160
                                             =
612
505
X 160
    The equation is transformed into :
     
612
505
X 160 = 1400

    Transposition :
     
612
505
X = 1400 + 160

    Combine the items on the right of the equation:
     
612
505
X = 1560

    The coefficient of the unknown number is reduced to 1 :
      X = 1560 ÷
612
505
        = 1560 ×
505
612
        = 130 ×
505
51

    We obtained :
      X =
65650
51
    This is the solution of the equation.

    Convert the result to decimal form :
      X = 1287.254902



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。