There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ 2({10}^{(-{(15x)}^{6})}) - 2({10}^{(-{(12x)}^{5})}) + 8({10}^{(-{(10x)}^{4})}) - ({10}^{(-{(7x)}^{3})}) + 5({10}^{(-{(5x)}^{2})}) - 0.0522x + 61.442\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = 2 * {10}^{(-11390625x^{6})} - 2 * {10}^{(-248832x^{5})} + 8 * {10}^{(-10000x^{4})} - {10}^{(-343x^{3})} + 5 * {10}^{(-25x^{2})} - 0.0522x + 61.442\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( 2 * {10}^{(-11390625x^{6})} - 2 * {10}^{(-248832x^{5})} + 8 * {10}^{(-10000x^{4})} - {10}^{(-343x^{3})} + 5 * {10}^{(-25x^{2})} - 0.0522x + 61.442\right)}{dx}\\=&2({10}^{(-11390625x^{6})}((-11390625*6x^{5})ln(10) + \frac{(-11390625x^{6})(0)}{(10)})) - 2({10}^{(-248832x^{5})}((-248832*5x^{4})ln(10) + \frac{(-248832x^{5})(0)}{(10)})) + 8({10}^{(-10000x^{4})}((-10000*4x^{3})ln(10) + \frac{(-10000x^{4})(0)}{(10)})) - ({10}^{(-343x^{3})}((-343*3x^{2})ln(10) + \frac{(-343x^{3})(0)}{(10)})) + 5({10}^{(-25x^{2})}((-25*2x)ln(10) + \frac{(-25x^{2})(0)}{(10)})) - 0.0522 + 0\\=&-136687500x^{5}{10}^{(-11390625x^{6})}ln(10) + 2488320x^{4}{10}^{(-248832x^{5})}ln(10) - 320000x^{3}{10}^{(-10000x^{4})}ln(10) + 1029x^{2}{10}^{(-343x^{3})}ln(10) - 250x{10}^{(-25x^{2})}ln(10) - 0.0522\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!