There are 1 questions in this calculation: for each question, the 1 derivative of p is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ (2d{\frac{1}{(4d(r + p) - {a}^{2})}}^{\frac{1}{2}})arctan(\frac{a{(4d(r + p) - {a}^{2})}^{\frac{1}{2}}}{({a}^{2} - 2d(r + p))})\ with\ respect\ to\ p:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{2darctan(\frac{(4dr + 4dp - a^{2})^{\frac{1}{2}}a}{(a^{2} - 2dr - 2dp)})}{(4dr + 4dp - a^{2})^{\frac{1}{2}}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{2darctan(\frac{(4dr + 4dp - a^{2})^{\frac{1}{2}}a}{(a^{2} - 2dr - 2dp)})}{(4dr + 4dp - a^{2})^{\frac{1}{2}}}\right)}{dp}\\=&2(\frac{\frac{-1}{2}(0 + 4d + 0)}{(4dr + 4dp - a^{2})^{\frac{3}{2}}})darctan(\frac{(4dr + 4dp - a^{2})^{\frac{1}{2}}a}{(a^{2} - 2dr - 2dp)}) + \frac{2d(\frac{((\frac{-(0 + 0 - 2d)}{(a^{2} - 2dr - 2dp)^{2}})(4dr + 4dp - a^{2})^{\frac{1}{2}}a + \frac{(\frac{\frac{1}{2}(0 + 4d + 0)}{(4dr + 4dp - a^{2})^{\frac{1}{2}}})a}{(a^{2} - 2dr - 2dp)} + 0)}{(1 + (\frac{(4dr + 4dp - a^{2})^{\frac{1}{2}}a}{(a^{2} - 2dr - 2dp)})^{2})})}{(4dr + 4dp - a^{2})^{\frac{1}{2}}}\\=&\frac{-4d^{2}arctan(\frac{(4dr + 4dp - a^{2})^{\frac{1}{2}}a}{(a^{2} - 2dr - 2dp)})}{(4dr + 4dp - a^{2})^{\frac{3}{2}}} + \frac{4d^{2}a}{(a^{2} - 2dr - 2dp)^{2}(\frac{4dra^{2}}{(a^{2} - 2dr - 2dp)^{2}} + \frac{4da^{2}p}{(a^{2} - 2dr - 2dp)^{2}} - \frac{a^{4}}{(a^{2} - 2dr - 2dp)^{2}} + 1)} + \frac{4d^{2}a}{(4dr + 4dp - a^{2})(a^{2} - 2dr - 2dp)(\frac{4dra^{2}}{(a^{2} - 2dr - 2dp)^{2}} + \frac{4da^{2}p}{(a^{2} - 2dr - 2dp)^{2}} - \frac{a^{4}}{(a^{2} - 2dr - 2dp)^{2}} + 1)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!