There are 1 questions in this calculation: for each question, the 1 derivative of a is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ (2d{\frac{1}{(4d(r + p) - {a}^{2})}}^{\frac{1}{2}})arctan(\frac{{(4d(r + p) - {a}^{2})}^{\frac{1}{2}}}{a})\ with\ respect\ to\ a:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{2darctan(\frac{(4dr + 4dp - a^{2})^{\frac{1}{2}}}{a})}{(4dr + 4dp - a^{2})^{\frac{1}{2}}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{2darctan(\frac{(4dr + 4dp - a^{2})^{\frac{1}{2}}}{a})}{(4dr + 4dp - a^{2})^{\frac{1}{2}}}\right)}{da}\\=&2(\frac{\frac{-1}{2}(0 + 0 - 2a)}{(4dr + 4dp - a^{2})^{\frac{3}{2}}})darctan(\frac{(4dr + 4dp - a^{2})^{\frac{1}{2}}}{a}) + \frac{2d(\frac{(\frac{(\frac{\frac{1}{2}(0 + 0 - 2a)}{(4dr + 4dp - a^{2})^{\frac{1}{2}}})}{a} + \frac{(4dr + 4dp - a^{2})^{\frac{1}{2}}*-1}{a^{2}})}{(1 + (\frac{(4dr + 4dp - a^{2})^{\frac{1}{2}}}{a})^{2})})}{(4dr + 4dp - a^{2})^{\frac{1}{2}}}\\=&\frac{2daarctan(\frac{(4dr + 4dp - a^{2})^{\frac{1}{2}}}{a})}{(4dr + 4dp - a^{2})^{\frac{3}{2}}} - \frac{2d}{(\frac{4dr}{a^{2}} + \frac{4dp}{a^{2}})a^{2}} - \frac{2d}{(4dr + 4dp - a^{2})(\frac{4dr}{a^{2}} + \frac{4dp}{a^{2}})}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!