There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ (144x - 144){\frac{1}{(\frac{-288x}{π} + 144{x}^{2}{π}^{2} + 144 + 25)}}^{\frac{1}{2}}{π}^{2} + \frac{12cos(\frac{x}{2})}{π}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{144π^{2}x}{(\frac{-288x}{π} + 144π^{2}x^{2} + 169)^{\frac{1}{2}}} - \frac{144π^{2}}{(\frac{-288x}{π} + 144π^{2}x^{2} + 169)^{\frac{1}{2}}} + \frac{12cos(\frac{1}{2}x)}{π}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{144π^{2}x}{(\frac{-288x}{π} + 144π^{2}x^{2} + 169)^{\frac{1}{2}}} - \frac{144π^{2}}{(\frac{-288x}{π} + 144π^{2}x^{2} + 169)^{\frac{1}{2}}} + \frac{12cos(\frac{1}{2}x)}{π}\right)}{dx}\\=&144(\frac{\frac{-1}{2}(\frac{-288}{π} + 144π^{2}*2x + 0)}{(\frac{-288x}{π} + 144π^{2}x^{2} + 169)^{\frac{3}{2}}})π^{2}x + \frac{144π^{2}}{(\frac{-288x}{π} + 144π^{2}x^{2} + 169)^{\frac{1}{2}}} - 144(\frac{\frac{-1}{2}(\frac{-288}{π} + 144π^{2}*2x + 0)}{(\frac{-288x}{π} + 144π^{2}x^{2} + 169)^{\frac{3}{2}}})π^{2} + 0 + \frac{12*-sin(\frac{1}{2}x)*\frac{1}{2}}{π}\\=& - \frac{20736π^{4}x^{2}}{(\frac{-288x}{π} + 144π^{2}x^{2} + 169)^{\frac{3}{2}}} + \frac{20736πx}{(\frac{-288x}{π} + 144π^{2}x^{2} + 169)^{\frac{3}{2}}} + \frac{20736π^{4}x}{(\frac{-288x}{π} + 144π^{2}x^{2} + 169)^{\frac{3}{2}}} + \frac{144π^{2}}{(\frac{-288x}{π} + 144π^{2}x^{2} + 169)^{\frac{1}{2}}} - \frac{20736π}{(\frac{-288x}{π} + 144π^{2}x^{2} + 169)^{\frac{3}{2}}} - \frac{6sin(\frac{1}{2}x)}{π}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!