There are 1 questions in this calculation: for each question, the 1 derivative of t is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{k}{(nt)} + pd - \frac{p(n - 1)l}{n} + \frac{pd}{(nt(1 + mt))} + \frac{1}{2}h(ntd - nlt + lt + \frac{2d}{(1 + mt)}) + \frac{cttd}{((1 + lt)n)}\ with\ respect\ to\ t:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{k}{nt} + pd - pl + \frac{pl}{n} + \frac{pd}{(nt + nmt^{2})} + \frac{1}{2}ndht - \frac{1}{2}nlht + \frac{1}{2}lht + \frac{dh}{(mt + 1)} + \frac{dct^{2}}{(nlt + n)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{k}{nt} + pd - pl + \frac{pl}{n} + \frac{pd}{(nt + nmt^{2})} + \frac{1}{2}ndht - \frac{1}{2}nlht + \frac{1}{2}lht + \frac{dh}{(mt + 1)} + \frac{dct^{2}}{(nlt + n)}\right)}{dt}\\=&\frac{k*-1}{nt^{2}} + 0 + 0 + 0 + (\frac{-(n + nm*2t)}{(nt + nmt^{2})^{2}})pd + 0 + \frac{1}{2}ndh - \frac{1}{2}nlh + \frac{1}{2}lh + (\frac{-(m + 0)}{(mt + 1)^{2}})dh + 0 + (\frac{-(nl + 0)}{(nlt + n)^{2}})dct^{2} + \frac{dc*2t}{(nlt + n)}\\=&\frac{-k}{nt^{2}} - \frac{2npdmt}{(nt + nmt^{2})^{2}} - \frac{npd}{(nt + nmt^{2})^{2}} + \frac{ndh}{2} - \frac{nlh}{2} + \frac{lh}{2} - \frac{dmh}{(mt + 1)^{2}} - \frac{ndlct^{2}}{(nlt + n)^{2}} + \frac{2dct}{(nlt + n)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!