There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{ln(\frac{(1 + x)}{(1 - x)})}{(1 - k)} + \frac{sqrt(k)ln(\frac{(1 + xsqrt(k))}{(1 - xsqrt(k))})}{(1 - k)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{ln(\frac{xsqrt(k)}{(-xsqrt(k) + 1)} + \frac{1}{(-xsqrt(k) + 1)})sqrt(k)}{(-k + 1)} + \frac{ln(\frac{x}{(-x + 1)} + \frac{1}{(-x + 1)})}{(-k + 1)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{ln(\frac{xsqrt(k)}{(-xsqrt(k) + 1)} + \frac{1}{(-xsqrt(k) + 1)})sqrt(k)}{(-k + 1)} + \frac{ln(\frac{x}{(-x + 1)} + \frac{1}{(-x + 1)})}{(-k + 1)}\right)}{dx}\\=&(\frac{-(0 + 0)}{(-k + 1)^{2}})ln(\frac{xsqrt(k)}{(-xsqrt(k) + 1)} + \frac{1}{(-xsqrt(k) + 1)})sqrt(k) + \frac{((\frac{-(-sqrt(k) - \frac{x*0*\frac{1}{2}}{(k)^{\frac{1}{2}}} + 0)}{(-xsqrt(k) + 1)^{2}})xsqrt(k) + \frac{sqrt(k)}{(-xsqrt(k) + 1)} + \frac{x*0*\frac{1}{2}}{(-xsqrt(k) + 1)(k)^{\frac{1}{2}}} + (\frac{-(-sqrt(k) - \frac{x*0*\frac{1}{2}}{(k)^{\frac{1}{2}}} + 0)}{(-xsqrt(k) + 1)^{2}}))sqrt(k)}{(-k + 1)(\frac{xsqrt(k)}{(-xsqrt(k) + 1)} + \frac{1}{(-xsqrt(k) + 1)})} + \frac{ln(\frac{xsqrt(k)}{(-xsqrt(k) + 1)} + \frac{1}{(-xsqrt(k) + 1)})*0*\frac{1}{2}}{(-k + 1)(k)^{\frac{1}{2}}} + (\frac{-(0 + 0)}{(-k + 1)^{2}})ln(\frac{x}{(-x + 1)} + \frac{1}{(-x + 1)}) + \frac{((\frac{-(-1 + 0)}{(-x + 1)^{2}})x + \frac{1}{(-x + 1)} + (\frac{-(-1 + 0)}{(-x + 1)^{2}}))}{(-k + 1)(\frac{x}{(-x + 1)} + \frac{1}{(-x + 1)})}\\=&\frac{xsqrt(k)^{3}}{(\frac{xsqrt(k)}{(-xsqrt(k) + 1)} + \frac{1}{(-xsqrt(k) + 1)})(-xsqrt(k) + 1)^{2}(-k + 1)} + \frac{sqrt(k)^{2}}{(\frac{xsqrt(k)}{(-xsqrt(k) + 1)} + \frac{1}{(-xsqrt(k) + 1)})(-k + 1)(-xsqrt(k) + 1)} + \frac{sqrt(k)^{2}}{(\frac{xsqrt(k)}{(-xsqrt(k) + 1)} + \frac{1}{(-xsqrt(k) + 1)})(-xsqrt(k) + 1)^{2}(-k + 1)} + \frac{x}{(\frac{x}{(-x + 1)} + \frac{1}{(-x + 1)})(-x + 1)^{2}(-k + 1)} + \frac{1}{(\frac{x}{(-x + 1)} + \frac{1}{(-x + 1)})(-k + 1)(-x + 1)} + \frac{1}{(\frac{x}{(-x + 1)} + \frac{1}{(-x + 1)})(-x + 1)^{2}(-k + 1)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!