There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{2(\frac{0.5}{1000} + \frac{1.552}{10000})(\frac{1}{x} + \frac{1}{0.259})}{(0.259 - x)} + \frac{4*9.7915*0.1}{1000(0.259 - x)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{0.001}{(-x + 0.259)x} + \frac{0.0003104}{(-x + 0.259)x} + \frac{0.00386100386100386}{(-x + 0.259)} + \frac{0.0011984555984556}{(-x + 0.259)} + \frac{0.0039166}{(-x + 0.259)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{0.001}{(-x + 0.259)x} + \frac{0.0003104}{(-x + 0.259)x} + \frac{0.00386100386100386}{(-x + 0.259)} + \frac{0.0011984555984556}{(-x + 0.259)} + \frac{0.0039166}{(-x + 0.259)}\right)}{dx}\\=&\frac{0.001(\frac{-(-1 + 0)}{(-x + 0.259)^{2}})}{x} + \frac{0.001*-1}{(-x + 0.259)x^{2}} + \frac{0.0003104(\frac{-(-1 + 0)}{(-x + 0.259)^{2}})}{x} + \frac{0.0003104*-1}{(-x + 0.259)x^{2}} + 0.00386100386100386(\frac{-(-1 + 0)}{(-x + 0.259)^{2}}) + 0.0011984555984556(\frac{-(-1 + 0)}{(-x + 0.259)^{2}}) + 0.0039166(\frac{-(-1 + 0)}{(-x + 0.259)^{2}})\\=&\frac{0.001}{(-x + 0.259)(-x + 0.259)x} - \frac{0.001}{(-x + 0.259)x^{2}} + \frac{0.0003104}{(-x + 0.259)(-x + 0.259)x} - \frac{0.0003104}{(-x + 0.259)x^{2}} + \frac{0.00386100386100386}{(-x + 0.259)(-x + 0.259)} + \frac{0.0011984555984556}{(-x + 0.259)(-x + 0.259)} + \frac{0.0039166}{(-x + 0.259)(-x + 0.259)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!