There are 2 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/2]Find\ the\ first\ derivative\ of\ function\ \frac{((L + Bw) + Bn((b - a)(L - Bp) - b))B}{2}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{1}{2}LB^{2}nb + \frac{1}{2}B^{2}w - \frac{1}{2}LB^{2}na - \frac{1}{2}B^{3}nbp + \frac{1}{2}LB + \frac{1}{2}B^{3}nap - \frac{1}{2}B^{2}nb\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{1}{2}LB^{2}nb + \frac{1}{2}B^{2}w - \frac{1}{2}LB^{2}na - \frac{1}{2}B^{3}nbp + \frac{1}{2}LB + \frac{1}{2}B^{3}nap - \frac{1}{2}B^{2}nb\right)}{dx}\\=&0 + 0 + 0 + 0 + 0 + 0 + 0\\=&0\\ \end{split}\end{equation} \]\[ \begin{equation}\begin{split}[2/2]Find\ the\ first\ derivative\ of\ function\ (b - a)(L - \frac{((L + Bw - nB(b - a)))}{2})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{1}{2}bL - \frac{1}{2}bBw + \frac{1}{2}b^{2}Bn - baBn - \frac{1}{2}aL + \frac{1}{2}aBw + \frac{1}{2}a^{2}Bn\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{1}{2}bL - \frac{1}{2}bBw + \frac{1}{2}b^{2}Bn - baBn - \frac{1}{2}aL + \frac{1}{2}aBw + \frac{1}{2}a^{2}Bn\right)}{dx}\\=&0 + 0 + 0 + 0 + 0 + 0 + 0\\=&0\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!