There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{(\frac{1}{R} + K(v - V) - sqrt({(\frac{1}{R} + K(v - V))}^{2} - \frac{(2KS)}{R}))}{K}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{1}{RK} + v - V - \frac{sqrt(\frac{2Kv}{R} - \frac{2KV}{R} - \frac{2KS}{R} - 2K^{2}vV + K^{2}v^{2} + K^{2}V^{2} + \frac{1}{R^{2}})}{K}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{1}{RK} + v - V - \frac{sqrt(\frac{2Kv}{R} - \frac{2KV}{R} - \frac{2KS}{R} - 2K^{2}vV + K^{2}v^{2} + K^{2}V^{2} + \frac{1}{R^{2}})}{K}\right)}{dx}\\=&0 + 0 + 0 - \frac{(0 + 0 + 0 + 0 + 0 + 0 + 0)*\frac{1}{2}}{K(\frac{2Kv}{R} - \frac{2KV}{R} - \frac{2KS}{R} - 2K^{2}vV + K^{2}v^{2} + K^{2}V^{2} + \frac{1}{R^{2}})^{\frac{1}{2}}}\\=& - \frac{0}{2}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!