There are 4 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/4]Find\ the\ first\ derivative\ of\ function\ x\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( x\right)}{dx}\\=&1\\ \end{split}\end{equation} \]\[ \begin{equation}\begin{split}[2/4]Find\ the\ first\ derivative\ of\ function\ {x}^{a}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( {x}^{a}\right)}{dx}\\=&({x}^{a}((0)ln(x) + \frac{(a)(1)}{(x)}))\\=&\frac{a{x}^{a}}{x}\\ \end{split}\end{equation} \]\[ \begin{equation}\begin{split}[3/4]Find\ the\ first\ derivative\ of\ function\ {a}^{x}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( {a}^{x}\right)}{dx}\\=&({a}^{x}((1)ln(a) + \frac{(x)(0)}{(a)}))\\=&{a}^{x}ln(a)\\ \end{split}\end{equation} \]\[ \begin{equation}\begin{split}[4/4]Find\ the\ first\ derivative\ of\ function\ {x}^{x}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( {x}^{x}\right)}{dx}\\=&({x}^{x}((1)ln(x) + \frac{(x)(1)}{(x)}))\\=&{x}^{x}ln(x) + {x}^{x}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!