There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ (\frac{(1)}{(sqrt(1 + (\frac{(8)}{(x)})))}) + (\frac{(1)}{(sqrt(1 + x))}) + (\frac{(1)}{(sqrt(2))})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{1}{sqrt(\frac{8}{x} + 1)} + \frac{1}{sqrt(x + 1)} + \frac{1}{sqrt(2)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{1}{sqrt(\frac{8}{x} + 1)} + \frac{1}{sqrt(x + 1)} + \frac{1}{sqrt(2)}\right)}{dx}\\=&\frac{-(\frac{8*-1}{x^{2}} + 0)*\frac{1}{2}}{(\frac{8}{x} + 1)(\frac{8}{x} + 1)^{\frac{1}{2}}} + \frac{-(1 + 0)*\frac{1}{2}}{(x + 1)(x + 1)^{\frac{1}{2}}} + \frac{-0*\frac{1}{2}*2^{\frac{1}{2}}}{(2)}\\=&\frac{4}{(\frac{8}{x} + 1)^{\frac{3}{2}}x^{2}} - \frac{1}{2(x + 1)^{\frac{3}{2}}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!