There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ e^{-139.34411 + \frac{1.575701 * {10}^{5}}{x} - \frac{6.642308 * {10}^{7}}{({x}^{2})} + \frac{1.2438 * {10}^{10}}{({x}^{3})} - \frac{8.621949 * {10}^{11}}{({x}^{4})}}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = e^{\frac{15.75701}{x} - \frac{66.42308}{x} + \frac{12.438}{x} - \frac{86.21949}{x} - 139.34411}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( e^{\frac{15.75701}{x} - \frac{66.42308}{x} + \frac{12.438}{x} - \frac{86.21949}{x} - 139.34411}\right)}{dx}\\=&e^{\frac{15.75701}{x} - \frac{66.42308}{x} + \frac{12.438}{x} - \frac{86.21949}{x} - 139.34411}(\frac{15.75701*-1}{x^{2}} - \frac{66.42308*-1}{x^{2}} + \frac{12.438*-1}{x^{2}} - \frac{86.21949*-1}{x^{2}} + 0)\\=&\frac{-15.75701e^{\frac{15.75701}{x} - \frac{66.42308}{x} + \frac{12.438}{x} - \frac{86.21949}{x} - 139.34411}}{x^{2}} + \frac{66.42308e^{\frac{15.75701}{x} - \frac{66.42308}{x} + \frac{12.438}{x} - \frac{86.21949}{x} - 139.34411}}{x^{2}} - \frac{12.438e^{\frac{15.75701}{x} - \frac{66.42308}{x} + \frac{12.438}{x} - \frac{86.21949}{x} - 139.34411}}{x^{2}} + \frac{86.21949e^{\frac{15.75701}{x} - \frac{66.42308}{x} + \frac{12.438}{x} - \frac{86.21949}{x} - 139.34411}}{x^{2}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!