There are 1 questions in this calculation: for each question, the 1 derivative of t is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ (\frac{1}{2})ln({t}^{2} - t + 1) + (\frac{3}{2})ln(t) + \frac{3}{(1 - t)} - (\frac{3}{2})ln(t - 1)\ with\ respect\ to\ t:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{1}{2}ln(t^{2} - t + 1) + \frac{3}{2}ln(t) + \frac{3}{(-t + 1)} - \frac{3}{2}ln(t - 1)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{1}{2}ln(t^{2} - t + 1) + \frac{3}{2}ln(t) + \frac{3}{(-t + 1)} - \frac{3}{2}ln(t - 1)\right)}{dt}\\=&\frac{\frac{1}{2}(2t - 1 + 0)}{(t^{2} - t + 1)} + \frac{\frac{3}{2}}{(t)} + 3(\frac{-(-1 + 0)}{(-t + 1)^{2}}) - \frac{\frac{3}{2}(1 + 0)}{(t - 1)}\\=&\frac{t}{(t^{2} - t + 1)} + \frac{3}{(-t + 1)^{2}} + \frac{3}{2t} - \frac{1}{2(t^{2} - t + 1)} - \frac{3}{2(t - 1)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!