There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ sin(x)cos(2)(x)cos(sin(x)) + sin(sin(x))cos(2)(x)cos(2x) + 2sin(2x)cos(sin(x))cos(x) + sin(x)cos(sin(x))cos(2x) + 2sin(2x)cos(x)cos(sin(x)) - sin(2)(x)sin(sin(x)) + 2sin(sin(x))cos(2)(x) + 4sin(sin(x))cos(2x) + sin(x)cos(sin(x))\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = xsin(x)cos(2)cos(sin(x)) + xsin(sin(x))cos(2)cos(2x) + 2sin(2x)cos(sin(x))cos(x) + sin(x)cos(sin(x))cos(2x) + 2sin(2x)cos(x)cos(sin(x)) - xsin(2)sin(sin(x)) + 2xsin(sin(x))cos(2) + 4sin(sin(x))cos(2x) + sin(x)cos(sin(x))\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( xsin(x)cos(2)cos(sin(x)) + xsin(sin(x))cos(2)cos(2x) + 2sin(2x)cos(sin(x))cos(x) + sin(x)cos(sin(x))cos(2x) + 2sin(2x)cos(x)cos(sin(x)) - xsin(2)sin(sin(x)) + 2xsin(sin(x))cos(2) + 4sin(sin(x))cos(2x) + sin(x)cos(sin(x))\right)}{dx}\\=&sin(x)cos(2)cos(sin(x)) + xcos(x)cos(2)cos(sin(x)) + xsin(x)*-sin(2)*0cos(sin(x)) + xsin(x)cos(2)*-sin(sin(x))cos(x) + sin(sin(x))cos(2)cos(2x) + xcos(sin(x))cos(x)cos(2)cos(2x) + xsin(sin(x))*-sin(2)*0cos(2x) + xsin(sin(x))cos(2)*-sin(2x)*2 + 2cos(2x)*2cos(sin(x))cos(x) + 2sin(2x)*-sin(sin(x))cos(x)cos(x) + 2sin(2x)cos(sin(x))*-sin(x) + cos(x)cos(sin(x))cos(2x) + sin(x)*-sin(sin(x))cos(x)cos(2x) + sin(x)cos(sin(x))*-sin(2x)*2 + 2cos(2x)*2cos(x)cos(sin(x)) + 2sin(2x)*-sin(x)cos(sin(x)) + 2sin(2x)cos(x)*-sin(sin(x))cos(x) - sin(2)sin(sin(x)) - xcos(2)*0sin(sin(x)) - xsin(2)cos(sin(x))cos(x) + 2sin(sin(x))cos(2) + 2xcos(sin(x))cos(x)cos(2) + 2xsin(sin(x))*-sin(2)*0 + 4cos(sin(x))cos(x)cos(2x) + 4sin(sin(x))*-sin(2x)*2 + cos(x)cos(sin(x)) + sin(x)*-sin(sin(x))cos(x)\\=&sin(x)cos(2)cos(sin(x)) + xcos(x)cos(sin(x))cos(2)cos(2x) - xsin(x)sin(sin(x))cos(x)cos(2) + sin(sin(x))cos(2)cos(2x) + xcos(x)cos(2)cos(sin(x)) - 2xsin(2x)sin(sin(x))cos(2) + 4cos(2x)cos(sin(x))cos(x) - sin(x)sin(sin(x))cos(x)cos(2x) - 4sin(x)sin(2x)cos(sin(x)) + 5cos(x)cos(sin(x))cos(2x) - 4sin(2x)sin(sin(x))cos^{2}(x) - 2sin(2x)sin(x)cos(sin(x)) + 4cos(2x)cos(x)cos(sin(x)) - sin(x)sin(sin(x))cos(x) - xsin(2)cos(x)cos(sin(x)) + 2sin(sin(x))cos(2) + 2xcos(x)cos(sin(x))cos(2) - 8sin(2x)sin(sin(x)) + cos(x)cos(sin(x)) - sin(2)sin(sin(x))\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!