There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ R - \frac{Re{x}^{2}Iw}{k} + \frac{e}{(ktw{x}^{2} - I{w}^{2}x)} - \frac{IC(t - \frac{Iw}{x})}{N}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = - \frac{RIwx^{2}e}{k} + R + \frac{e}{(kwtx^{2} - Iw^{2}x)} - \frac{ItC}{N} + \frac{I^{2}wC}{Nx}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( - \frac{RIwx^{2}e}{k} + R + \frac{e}{(kwtx^{2} - Iw^{2}x)} - \frac{ItC}{N} + \frac{I^{2}wC}{Nx}\right)}{dx}\\=& - \frac{RIw*2xe}{k} - \frac{RIwx^{2}*0}{k} + 0 + (\frac{-(kwt*2x - Iw^{2})}{(kwtx^{2} - Iw^{2}x)^{2}})e + \frac{0}{(kwtx^{2} - Iw^{2}x)} + 0 + \frac{I^{2}wC*-1}{Nx^{2}}\\=& - \frac{2RIwxe}{k} - \frac{2kwtxe}{(kwtx^{2} - Iw^{2}x)^{2}} + \frac{Iw^{2}e}{(kwtx^{2} - Iw^{2}x)^{2}} - \frac{I^{2}wC}{Nx^{2}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!