There are 1 questions in this calculation: for each question, the 1 derivative of z is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ z{({r}^{2} + {z}^{2})}^{\frac{-3}{2}} + (h - z){({r}^{2} + {(h - z)}^{2})}^{\frac{-3}{2}}\ with\ respect\ to\ z:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{z}{(r^{2} + z^{2})^{\frac{3}{2}}} + \frac{h}{(r^{2} - 2hz + h^{2} + z^{2})^{\frac{3}{2}}} - \frac{z}{(r^{2} - 2hz + h^{2} + z^{2})^{\frac{3}{2}}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{z}{(r^{2} + z^{2})^{\frac{3}{2}}} + \frac{h}{(r^{2} - 2hz + h^{2} + z^{2})^{\frac{3}{2}}} - \frac{z}{(r^{2} - 2hz + h^{2} + z^{2})^{\frac{3}{2}}}\right)}{dz}\\=&(\frac{\frac{-3}{2}(0 + 2z)}{(r^{2} + z^{2})^{\frac{5}{2}}})z + \frac{1}{(r^{2} + z^{2})^{\frac{3}{2}}} + (\frac{\frac{-3}{2}(0 - 2h + 0 + 2z)}{(r^{2} - 2hz + h^{2} + z^{2})^{\frac{5}{2}}})h + 0 - (\frac{\frac{-3}{2}(0 - 2h + 0 + 2z)}{(r^{2} - 2hz + h^{2} + z^{2})^{\frac{5}{2}}})z - \frac{1}{(r^{2} - 2hz + h^{2} + z^{2})^{\frac{3}{2}}}\\=&\frac{-3z^{2}}{(r^{2} + z^{2})^{\frac{5}{2}}} - \frac{6hz}{(r^{2} - 2hz + h^{2} + z^{2})^{\frac{5}{2}}} + \frac{3h^{2}}{(r^{2} - 2hz + h^{2} + z^{2})^{\frac{5}{2}}} + \frac{3z^{2}}{(r^{2} - 2hz + h^{2} + z^{2})^{\frac{5}{2}}} + \frac{1}{(r^{2} + z^{2})^{\frac{3}{2}}} - \frac{1}{(r^{2} - 2hz + h^{2} + z^{2})^{\frac{3}{2}}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!