There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{(9({e}^{(4x)}) - 24({e}^{(3x)}) + 30({e}^{(2x)}) - 24({e}^{x}) + 9)}{(12({e}^{(3x)}) - 12({e}^{x}))}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{9{e}^{(4x)}}{(12{e}^{(3x)} - 12{e}^{x})} - \frac{24{e}^{(3x)}}{(12{e}^{(3x)} - 12{e}^{x})} + \frac{30{e}^{(2x)}}{(12{e}^{(3x)} - 12{e}^{x})} - \frac{24{e}^{x}}{(12{e}^{(3x)} - 12{e}^{x})} + \frac{9}{(12{e}^{(3x)} - 12{e}^{x})}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{9{e}^{(4x)}}{(12{e}^{(3x)} - 12{e}^{x})} - \frac{24{e}^{(3x)}}{(12{e}^{(3x)} - 12{e}^{x})} + \frac{30{e}^{(2x)}}{(12{e}^{(3x)} - 12{e}^{x})} - \frac{24{e}^{x}}{(12{e}^{(3x)} - 12{e}^{x})} + \frac{9}{(12{e}^{(3x)} - 12{e}^{x})}\right)}{dx}\\=&9(\frac{-(12({e}^{(3x)}((3)ln(e) + \frac{(3x)(0)}{(e)})) - 12({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)})))}{(12{e}^{(3x)} - 12{e}^{x})^{2}}){e}^{(4x)} + \frac{9({e}^{(4x)}((4)ln(e) + \frac{(4x)(0)}{(e)}))}{(12{e}^{(3x)} - 12{e}^{x})} - 24(\frac{-(12({e}^{(3x)}((3)ln(e) + \frac{(3x)(0)}{(e)})) - 12({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)})))}{(12{e}^{(3x)} - 12{e}^{x})^{2}}){e}^{(3x)} - \frac{24({e}^{(3x)}((3)ln(e) + \frac{(3x)(0)}{(e)}))}{(12{e}^{(3x)} - 12{e}^{x})} + 30(\frac{-(12({e}^{(3x)}((3)ln(e) + \frac{(3x)(0)}{(e)})) - 12({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)})))}{(12{e}^{(3x)} - 12{e}^{x})^{2}}){e}^{(2x)} + \frac{30({e}^{(2x)}((2)ln(e) + \frac{(2x)(0)}{(e)}))}{(12{e}^{(3x)} - 12{e}^{x})} - 24(\frac{-(12({e}^{(3x)}((3)ln(e) + \frac{(3x)(0)}{(e)})) - 12({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)})))}{(12{e}^{(3x)} - 12{e}^{x})^{2}}){e}^{x} - \frac{24({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)}))}{(12{e}^{(3x)} - 12{e}^{x})} + 9(\frac{-(12({e}^{(3x)}((3)ln(e) + \frac{(3x)(0)}{(e)})) - 12({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)})))}{(12{e}^{(3x)} - 12{e}^{x})^{2}})\\=&\frac{-324{e}^{(7x)}}{(12{e}^{(3x)} - 12{e}^{x})^{2}} - \frac{972{e}^{(5x)}}{(12{e}^{(3x)} - 12{e}^{x})^{2}} + \frac{36{e}^{(4x)}}{(12{e}^{(3x)} - 12{e}^{x})} + \frac{864{e}^{(6x)}}{(12{e}^{(3x)} - 12{e}^{x})^{2}} + \frac{576{e}^{(4x)}}{(12{e}^{(3x)} - 12{e}^{x})^{2}} - \frac{72{e}^{(3x)}}{(12{e}^{(3x)} - 12{e}^{x})} + \frac{36{e}^{(3x)}}{(12{e}^{(3x)} - 12{e}^{x})^{2}} + \frac{60{e}^{(2x)}}{(12{e}^{(3x)} - 12{e}^{x})} - \frac{288{e}^{(2x)}}{(12{e}^{(3x)} - 12{e}^{x})^{2}} - \frac{24{e}^{x}}{(12{e}^{(3x)} - 12{e}^{x})} + \frac{108{e}^{x}}{(12{e}^{(3x)} - 12{e}^{x})^{2}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!