There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{(x - 2)(x - 3)(x - 4)(x - 5)}{24} - \frac{(x - 1)(x - 3)(x - 4)(x - 5)}{12} + \frac{(x - 1)(x - 2)(x - 4)(x - 5)}{12} - \frac{(x - 1)(x - 2)(x - 3)(x - 5)}{24} + \frac{(x - 1)(x - 2)(x - 3)(x - 4)}{144}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{1}{144}x^{4} - \frac{1}{9}x^{3} + \frac{95}{144}x^{2} - \frac{65}{36}x + \frac{9}{4}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{1}{144}x^{4} - \frac{1}{9}x^{3} + \frac{95}{144}x^{2} - \frac{65}{36}x + \frac{9}{4}\right)}{dx}\\=&\frac{1}{144}*4x^{3} - \frac{1}{9}*3x^{2} + \frac{95}{144}*2x - \frac{65}{36} + 0\\=&\frac{x^{3}}{36} - \frac{x^{2}}{3} + \frac{95x}{72} - \frac{65}{36}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!