There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ x - \frac{(2({x}^{3}) - 25.91005({x}^{2}) + 12.87x - 1.469754)}{(6({x}^{2}) - 51.8201x + 12.87)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = x - \frac{2x^{3}}{(6x - 51.8201x + 12.87)} + \frac{25.91005x^{2}}{(6x - 51.8201x + 12.87)} - \frac{12.87x}{(6x - 51.8201x + 12.87)} + \frac{1.469754}{(6x - 51.8201x + 12.87)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( x - \frac{2x^{3}}{(6x - 51.8201x + 12.87)} + \frac{25.91005x^{2}}{(6x - 51.8201x + 12.87)} - \frac{12.87x}{(6x - 51.8201x + 12.87)} + \frac{1.469754}{(6x - 51.8201x + 12.87)}\right)}{dx}\\=&1 - 2(\frac{-(6 - 51.8201 + 0)}{(6x - 51.8201x + 12.87)^{2}})x^{3} - \frac{2*3x^{2}}{(6x - 51.8201x + 12.87)} + 25.91005(\frac{-(6 - 51.8201 + 0)}{(6x - 51.8201x + 12.87)^{2}})x^{2} + \frac{25.91005*2x}{(6x - 51.8201x + 12.87)} - 12.87(\frac{-(6 - 51.8201 + 0)}{(6x - 51.8201x + 12.87)^{2}})x - \frac{12.87}{(6x - 51.8201x + 12.87)} + 1.469754(\frac{-(6 - 51.8201 + 0)}{(6x - 51.8201x + 12.87)^{2}})\\=& - \frac{91.6402x^{3}}{(6x - 51.8201x + 12.87)(6x - 51.8201x + 12.87)} - \frac{6x^{2}}{(6x - 51.8201x + 12.87)} + \frac{1187.201082005x^{2}}{(6x - 51.8201x + 12.87)(6x - 51.8201x + 12.87)} + \frac{51.8201x}{(6x - 51.8201x + 12.87)} - \frac{589.704687x}{(6x - 51.8201x + 12.87)(6x - 51.8201x + 12.87)} + \frac{67.3442752554}{(6x - 51.8201x + 12.87)(6x - 51.8201x + 12.87)} - \frac{12.87}{(6x - 51.8201x + 12.87)} + 1\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!