There are 3 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/3]Find\ the\ first\ derivative\ of\ function\ \frac{250x}{(x + 250)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{250x}{(x + 250)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{250x}{(x + 250)}\right)}{dx}\\=&250(\frac{-(1 + 0)}{(x + 250)^{2}})x + \frac{250}{(x + 250)}\\=&\frac{-250x}{(x + 250)^{2}} + \frac{250}{(x + 250)}\\ \end{split}\end{equation} \]\[ \begin{equation}\begin{split}[2/3]Find\ the\ first\ derivative\ of\ function\ \frac{x*500}{(x + 500)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{500x}{(x + 500)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{500x}{(x + 500)}\right)}{dx}\\=&500(\frac{-(1 + 0)}{(x + 500)^{2}})x + \frac{500}{(x + 500)}\\=&\frac{-500x}{(x + 500)^{2}} + \frac{500}{(x + 500)}\\ \end{split}\end{equation} \]\[ \begin{equation}\begin{split}[3/3]Find\ the\ first\ derivative\ of\ function\ \frac{x*600}{(x + 600)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{600x}{(x + 600)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{600x}{(x + 600)}\right)}{dx}\\=&600(\frac{-(1 + 0)}{(x + 600)^{2}})x + \frac{600}{(x + 600)}\\=&\frac{-600x}{(x + 600)^{2}} + \frac{600}{(x + 600)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!