There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ (\frac{((\frac{((\frac{(2 - 0.3)}{2})(ln(\frac{4x}{0.26}) - 2) + (ln(\frac{4x}{0.26}) - 1))}{2})(\frac{69.8*0.26*0.26}{(4*3.14(1 - 0.3))})*2*3.14x)*10}{1.6}) + (\frac{-3.14xx*0.26((\frac{6.2}{2}) - (\frac{69.8}{100}))*10}{1.6})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = 8.95247321428572xln(15.3846153846154x) + 10.5323214285714xln(15.3846153846154x) - 17.9049464285714x - 10.5323214285714x - 12.256205x^{2}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( 8.95247321428572xln(15.3846153846154x) + 10.5323214285714xln(15.3846153846154x) - 17.9049464285714x - 10.5323214285714x - 12.256205x^{2}\right)}{dx}\\=&8.95247321428572ln(15.3846153846154x) + \frac{8.95247321428572x*15.3846153846154}{(15.3846153846154x)} + 10.5323214285714ln(15.3846153846154x) + \frac{10.5323214285714x*15.3846153846154}{(15.3846153846154x)} - 17.9049464285714 - 10.5323214285714 - 12.256205*2x\\=&8.95247321428572ln(15.3846153846154x) + 10.5323214285714ln(15.3846153846154x) - 24.51241x - 8.95247321428571\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!