There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ cos(x) + sin(x) + ({e}^{x} + {x}^{(\frac{e^{-1}}{arctan(x)} + arcsin(x) + 2)} + {x}^{(3e^{x})})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( cos(x) + sin(x) + {e}^{x} + {x}^{(\frac{e^{-1}}{arctan(x)} + arcsin(x) + 2)} + {x}^{(3e^{x})}\right)}{dx}\\=&-sin(x) + cos(x) + ({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)})) + ({x}^{(\frac{e^{-1}}{arctan(x)} + arcsin(x) + 2)}((\frac{e^{-1}*0}{arctan(x)} + e^{-1}(\frac{-(1)}{arctan^{2}(x)(1 + (x)^{2})}) + (\frac{(1)}{((1 - (x)^{2})^{\frac{1}{2}})}) + 0)ln(x) + \frac{(\frac{e^{-1}}{arctan(x)} + arcsin(x) + 2)(1)}{(x)})) + ({x}^{(3e^{x})}((3e^{x})ln(x) + \frac{(3e^{x})(1)}{(x)}))\\=&-sin(x) + cos(x) + 3{x}^{(3e^{x})}e^{x}ln(x) - \frac{{x}^{(\frac{e^{-1}}{arctan(x)} + arcsin(x) + 2)}e^{-1}ln(x)}{(x^{2} + 1)arctan^{2}(x)} + \frac{{x}^{(\frac{e^{-1}}{arctan(x)} + arcsin(x) + 2)}ln(x)}{(-x^{2} + 1)^{\frac{1}{2}}} + \frac{{x}^{(\frac{e^{-1}}{arctan(x)} + arcsin(x) + 2)}e^{-1}}{xarctan(x)} + \frac{{x}^{(\frac{e^{-1}}{arctan(x)} + arcsin(x) + 2)}arcsin(x)}{x} + \frac{3{x}^{(3e^{x})}e^{x}}{x} + {e}^{x} + \frac{2{x}^{(\frac{e^{-1}}{arctan(x)} + arcsin(x) + 2)}}{x}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!