There are 1 questions in this calculation: for each question, the 1 derivative of t is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ tan(\frac{(tx + 1 + {({t}^{2}{x}^{2} + 2tx + 1 - 2{x}^{2})}^{\frac{1}{2}})}{x}){\frac{1}{t}}^{3}\ with\ respect\ to\ t:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{tan(t + \frac{(x^{2}t^{2} + 2xt - 2x^{2} + 1)^{\frac{1}{2}}}{x} + \frac{1}{x})}{t^{3}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{tan(t + \frac{(x^{2}t^{2} + 2xt - 2x^{2} + 1)^{\frac{1}{2}}}{x} + \frac{1}{x})}{t^{3}}\right)}{dt}\\=&\frac{-3tan(t + \frac{(x^{2}t^{2} + 2xt - 2x^{2} + 1)^{\frac{1}{2}}}{x} + \frac{1}{x})}{t^{4}} + \frac{sec^{2}(t + \frac{(x^{2}t^{2} + 2xt - 2x^{2} + 1)^{\frac{1}{2}}}{x} + \frac{1}{x})(1 + \frac{(\frac{\frac{1}{2}(x^{2}*2t + 2x + 0 + 0)}{(x^{2}t^{2} + 2xt - 2x^{2} + 1)^{\frac{1}{2}}})}{x} + 0 + 0)}{t^{3}}\\=&\frac{-3tan(t + \frac{(x^{2}t^{2} + 2xt - 2x^{2} + 1)^{\frac{1}{2}}}{x} + \frac{1}{x})}{t^{4}} + \frac{sec^{2}(t + \frac{(x^{2}t^{2} + 2xt - 2x^{2} + 1)^{\frac{1}{2}}}{x} + \frac{1}{x})}{t^{3}} + \frac{xsec^{2}(t + \frac{(x^{2}t^{2} + 2xt - 2x^{2} + 1)^{\frac{1}{2}}}{x} + \frac{1}{x})}{(x^{2}t^{2} + 2xt - 2x^{2} + 1)^{\frac{1}{2}}t^{2}} + \frac{sec^{2}(t + \frac{(x^{2}t^{2} + 2xt - 2x^{2} + 1)^{\frac{1}{2}}}{x} + \frac{1}{x})}{(x^{2}t^{2} + 2xt - 2x^{2} + 1)^{\frac{1}{2}}t^{3}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!