There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{({(1 + x)}^{3} - 1)}{\frac{1}{10}} + \frac{({(1 + x)}^{2} - 1)}{({\frac{11}{10}}^{2})} + \frac{((1 + x) - 1)}{\frac{11}{10}} + 10\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = 10x^{3} + \frac{3730}{121}x^{2} + \frac{3940}{121}x + 10\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( 10x^{3} + \frac{3730}{121}x^{2} + \frac{3940}{121}x + 10\right)}{dx}\\=&10*3x^{2} + \frac{3730}{121}*2x + \frac{3940}{121} + 0\\=&30x^{2} + \frac{7460x}{121} + \frac{3940}{121}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!