There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ ({x}^{4})({(1 + ({x}^{2}))}^{\frac{1}{2}}) - (\frac{4}{3})({x}^{2})({(1 + {x}^{2})}^{(\frac{3}{2})}) + (\frac{8}{15})({(1 + ({x}^{2}))}^{(\frac{5}{2})})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = (x^{2} + 1)^{\frac{1}{2}}x^{4} - \frac{4}{3}(x^{2} + 1)^{\frac{3}{2}}x^{2} + \frac{8}{15}(x^{2} + 1)^{\frac{5}{2}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( (x^{2} + 1)^{\frac{1}{2}}x^{4} - \frac{4}{3}(x^{2} + 1)^{\frac{3}{2}}x^{2} + \frac{8}{15}(x^{2} + 1)^{\frac{5}{2}}\right)}{dx}\\=&(\frac{\frac{1}{2}(2x + 0)}{(x^{2} + 1)^{\frac{1}{2}}})x^{4} + (x^{2} + 1)^{\frac{1}{2}}*4x^{3} - \frac{4}{3}(\frac{3}{2}(x^{2} + 1)^{\frac{1}{2}}(2x + 0))x^{2} - \frac{4}{3}(x^{2} + 1)^{\frac{3}{2}}*2x + \frac{8}{15}(\frac{5}{2}(x^{2} + 1)^{\frac{3}{2}}(2x + 0))\\=&\frac{x^{5}}{(x^{2} + 1)^{\frac{1}{2}}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!