There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{(sqrt(3)cos(x) - 1 - (1 - \frac{2}{sqrt(3)})sin(x))}{(sqrt(3)sin(x) + sin(x){cos(x)}^{2})}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{cos(x)sqrt(3)}{(sin(x)sqrt(3) + sin(x)cos^{2}(x))} + \frac{2sin(x)}{(sin(x)sqrt(3) + sin(x)cos^{2}(x))sqrt(3)} - \frac{sin(x)}{(sin(x)sqrt(3) + sin(x)cos^{2}(x))} - \frac{1}{(sin(x)sqrt(3) + sin(x)cos^{2}(x))}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{cos(x)sqrt(3)}{(sin(x)sqrt(3) + sin(x)cos^{2}(x))} + \frac{2sin(x)}{(sin(x)sqrt(3) + sin(x)cos^{2}(x))sqrt(3)} - \frac{sin(x)}{(sin(x)sqrt(3) + sin(x)cos^{2}(x))} - \frac{1}{(sin(x)sqrt(3) + sin(x)cos^{2}(x))}\right)}{dx}\\=&(\frac{-(cos(x)sqrt(3) + sin(x)*0*\frac{1}{2}*3^{\frac{1}{2}} + cos(x)cos^{2}(x) + sin(x)*-2cos(x)sin(x))}{(sin(x)sqrt(3) + sin(x)cos^{2}(x))^{2}})cos(x)sqrt(3) + \frac{-sin(x)sqrt(3)}{(sin(x)sqrt(3) + sin(x)cos^{2}(x))} + \frac{cos(x)*0*\frac{1}{2}*3^{\frac{1}{2}}}{(sin(x)sqrt(3) + sin(x)cos^{2}(x))} + \frac{2(\frac{-(cos(x)sqrt(3) + sin(x)*0*\frac{1}{2}*3^{\frac{1}{2}} + cos(x)cos^{2}(x) + sin(x)*-2cos(x)sin(x))}{(sin(x)sqrt(3) + sin(x)cos^{2}(x))^{2}})sin(x)}{sqrt(3)} + \frac{2cos(x)}{(sin(x)sqrt(3) + sin(x)cos^{2}(x))sqrt(3)} + \frac{2sin(x)*-0*\frac{1}{2}*3^{\frac{1}{2}}}{(sin(x)sqrt(3) + sin(x)cos^{2}(x))(3)} - (\frac{-(cos(x)sqrt(3) + sin(x)*0*\frac{1}{2}*3^{\frac{1}{2}} + cos(x)cos^{2}(x) + sin(x)*-2cos(x)sin(x))}{(sin(x)sqrt(3) + sin(x)cos^{2}(x))^{2}})sin(x) - \frac{cos(x)}{(sin(x)sqrt(3) + sin(x)cos^{2}(x))} - (\frac{-(cos(x)sqrt(3) + sin(x)*0*\frac{1}{2}*3^{\frac{1}{2}} + cos(x)cos^{2}(x) + sin(x)*-2cos(x)sin(x))}{(sin(x)sqrt(3) + sin(x)cos^{2}(x))^{2}})\\=&\frac{-cos^{2}(x)sqrt(3)^{2}}{(sin(x)sqrt(3) + sin(x)cos^{2}(x))^{2}} - \frac{cos^{4}(x)sqrt(3)}{(sin(x)sqrt(3) + sin(x)cos^{2}(x))^{2}} + \frac{2sin^{2}(x)cos^{2}(x)sqrt(3)}{(sin(x)sqrt(3) + sin(x)cos^{2}(x))^{2}} - \frac{sin(x)sqrt(3)}{(sin(x)sqrt(3) + sin(x)cos^{2}(x))} - \frac{2sin(x)cos^{3}(x)}{(sin(x)sqrt(3) + sin(x)cos^{2}(x))^{2}sqrt(3)} + \frac{4sin^{3}(x)cos(x)}{(sin(x)sqrt(3) + sin(x)cos^{2}(x))^{2}sqrt(3)} + \frac{sin(x)cos(x)sqrt(3)}{(sin(x)sqrt(3) + sin(x)cos^{2}(x))^{2}} + \frac{2cos(x)}{(sin(x)sqrt(3) + sin(x)cos^{2}(x))sqrt(3)} - \frac{2sin(x)cos(x)}{(sin(x)sqrt(3) + sin(x)cos^{2}(x))^{2}} + \frac{sin(x)cos^{3}(x)}{(sin(x)sqrt(3) + sin(x)cos^{2}(x))^{2}} - \frac{2sin^{3}(x)cos(x)}{(sin(x)sqrt(3) + sin(x)cos^{2}(x))^{2}} + \frac{cos(x)sqrt(3)}{(sin(x)sqrt(3) + sin(x)cos^{2}(x))^{2}} - \frac{cos(x)}{(sin(x)sqrt(3) + sin(x)cos^{2}(x))} + \frac{cos^{3}(x)}{(sin(x)sqrt(3) + sin(x)cos^{2}(x))^{2}} - \frac{2sin^{2}(x)cos(x)}{(sin(x)sqrt(3) + sin(x)cos^{2}(x))^{2}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!