There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{(\frac{sqrt(3)}{tan(x)} - 1 - \frac{1}{sin(x)} + \frac{2}{sqrt(3)})}{(sqrt(3) + cos(x)cos(x))}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{sqrt(3)}{(sqrt(3) + cos^{2}(x))tan(x)} - \frac{1}{(sqrt(3) + cos^{2}(x))sin(x)} + \frac{2}{(sqrt(3) + cos^{2}(x))sqrt(3)} - \frac{1}{(sqrt(3) + cos^{2}(x))}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{sqrt(3)}{(sqrt(3) + cos^{2}(x))tan(x)} - \frac{1}{(sqrt(3) + cos^{2}(x))sin(x)} + \frac{2}{(sqrt(3) + cos^{2}(x))sqrt(3)} - \frac{1}{(sqrt(3) + cos^{2}(x))}\right)}{dx}\\=&\frac{(\frac{-(0*\frac{1}{2}*3^{\frac{1}{2}} + -2cos(x)sin(x))}{(sqrt(3) + cos^{2}(x))^{2}})sqrt(3)}{tan(x)} + \frac{-sec^{2}(x)(1)sqrt(3)}{(sqrt(3) + cos^{2}(x))tan^{2}(x)} + \frac{0*\frac{1}{2}*3^{\frac{1}{2}}}{(sqrt(3) + cos^{2}(x))tan(x)} - \frac{(\frac{-(0*\frac{1}{2}*3^{\frac{1}{2}} + -2cos(x)sin(x))}{(sqrt(3) + cos^{2}(x))^{2}})}{sin(x)} - \frac{-cos(x)}{(sqrt(3) + cos^{2}(x))sin^{2}(x)} + \frac{2(\frac{-(0*\frac{1}{2}*3^{\frac{1}{2}} + -2cos(x)sin(x))}{(sqrt(3) + cos^{2}(x))^{2}})}{sqrt(3)} + \frac{2*-0*\frac{1}{2}*3^{\frac{1}{2}}}{(sqrt(3) + cos^{2}(x))(3)} - (\frac{-(0*\frac{1}{2}*3^{\frac{1}{2}} + -2cos(x)sin(x))}{(sqrt(3) + cos^{2}(x))^{2}})\\=&\frac{2sin(x)cos(x)sqrt(3)}{(sqrt(3) + cos^{2}(x))^{2}tan(x)} - \frac{sqrt(3)sec^{2}(x)}{(sqrt(3) + cos^{2}(x))tan^{2}(x)} - \frac{2cos(x)}{(sqrt(3) + cos^{2}(x))^{2}} + \frac{4sin(x)cos(x)}{(sqrt(3) + cos^{2}(x))^{2}sqrt(3)} + \frac{cos(x)}{(sqrt(3) + cos^{2}(x))sin^{2}(x)} - \frac{2sin(x)cos(x)}{(sqrt(3) + cos^{2}(x))^{2}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!