There are 1 questions in this calculation: for each question, the 2 derivative of a is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ a{\frac{1}{(rr + aa)}}^{\frac{3}{2}} - (h - a){\frac{1}{(rr + {(h - a)}^{2})}}^{\frac{3}{2}}\ with\ respect\ to\ a:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{a}{(r^{2} + a^{2})^{\frac{3}{2}}} - \frac{h}{(r^{2} - 2ha + h^{2} + a^{2})^{\frac{3}{2}}} + \frac{a}{(r^{2} - 2ha + h^{2} + a^{2})^{\frac{3}{2}}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{a}{(r^{2} + a^{2})^{\frac{3}{2}}} - \frac{h}{(r^{2} - 2ha + h^{2} + a^{2})^{\frac{3}{2}}} + \frac{a}{(r^{2} - 2ha + h^{2} + a^{2})^{\frac{3}{2}}}\right)}{da}\\=&(\frac{\frac{-3}{2}(0 + 2a)}{(r^{2} + a^{2})^{\frac{5}{2}}})a + \frac{1}{(r^{2} + a^{2})^{\frac{3}{2}}} - (\frac{\frac{-3}{2}(0 - 2h + 0 + 2a)}{(r^{2} - 2ha + h^{2} + a^{2})^{\frac{5}{2}}})h + 0 + (\frac{\frac{-3}{2}(0 - 2h + 0 + 2a)}{(r^{2} - 2ha + h^{2} + a^{2})^{\frac{5}{2}}})a + \frac{1}{(r^{2} - 2ha + h^{2} + a^{2})^{\frac{3}{2}}}\\=&\frac{-3a^{2}}{(r^{2} + a^{2})^{\frac{5}{2}}} + \frac{6ha}{(r^{2} - 2ha + h^{2} + a^{2})^{\frac{5}{2}}} - \frac{3h^{2}}{(r^{2} - 2ha + h^{2} + a^{2})^{\frac{5}{2}}} - \frac{3a^{2}}{(r^{2} - 2ha + h^{2} + a^{2})^{\frac{5}{2}}} + \frac{1}{(r^{2} + a^{2})^{\frac{3}{2}}} + \frac{1}{(r^{2} - 2ha + h^{2} + a^{2})^{\frac{3}{2}}}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{-3a^{2}}{(r^{2} + a^{2})^{\frac{5}{2}}} + \frac{6ha}{(r^{2} - 2ha + h^{2} + a^{2})^{\frac{5}{2}}} - \frac{3h^{2}}{(r^{2} - 2ha + h^{2} + a^{2})^{\frac{5}{2}}} - \frac{3a^{2}}{(r^{2} - 2ha + h^{2} + a^{2})^{\frac{5}{2}}} + \frac{1}{(r^{2} + a^{2})^{\frac{3}{2}}} + \frac{1}{(r^{2} - 2ha + h^{2} + a^{2})^{\frac{3}{2}}}\right)}{da}\\=&-3(\frac{\frac{-5}{2}(0 + 2a)}{(r^{2} + a^{2})^{\frac{7}{2}}})a^{2} - \frac{3*2a}{(r^{2} + a^{2})^{\frac{5}{2}}} + 6(\frac{\frac{-5}{2}(0 - 2h + 0 + 2a)}{(r^{2} - 2ha + h^{2} + a^{2})^{\frac{7}{2}}})ha + \frac{6h}{(r^{2} - 2ha + h^{2} + a^{2})^{\frac{5}{2}}} - 3(\frac{\frac{-5}{2}(0 - 2h + 0 + 2a)}{(r^{2} - 2ha + h^{2} + a^{2})^{\frac{7}{2}}})h^{2} + 0 - 3(\frac{\frac{-5}{2}(0 - 2h + 0 + 2a)}{(r^{2} - 2ha + h^{2} + a^{2})^{\frac{7}{2}}})a^{2} - \frac{3*2a}{(r^{2} - 2ha + h^{2} + a^{2})^{\frac{5}{2}}} + (\frac{\frac{-3}{2}(0 + 2a)}{(r^{2} + a^{2})^{\frac{5}{2}}}) + (\frac{\frac{-3}{2}(0 - 2h + 0 + 2a)}{(r^{2} - 2ha + h^{2} + a^{2})^{\frac{5}{2}}})\\=&\frac{15a^{3}}{(r^{2} + a^{2})^{\frac{7}{2}}} - \frac{9a}{(r^{2} + a^{2})^{\frac{5}{2}}} + \frac{45h^{2}a}{(r^{2} - 2ha + h^{2} + a^{2})^{\frac{7}{2}}} - \frac{45ha^{2}}{(r^{2} - 2ha + h^{2} + a^{2})^{\frac{7}{2}}} + \frac{9h}{(r^{2} - 2ha + h^{2} + a^{2})^{\frac{5}{2}}} - \frac{15h^{3}}{(r^{2} - 2ha + h^{2} + a^{2})^{\frac{7}{2}}} + \frac{15a^{3}}{(r^{2} - 2ha + h^{2} + a^{2})^{\frac{7}{2}}} - \frac{9a}{(r^{2} - 2ha + h^{2} + a^{2})^{\frac{5}{2}}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!