There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{0.0015}{(1 + \frac{x}{10000})} + (-0.000942)e^{\frac{1500}{x}}{(1 - e^{\frac{-1500}{x}})}^{2.5}{(\frac{1500}{x})}^{0.5} + \frac{(-0.0004882)*1500}{x}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{-0.0364835031213(-e^{\frac{-1500}{x}} + 1)^{\frac{5}{2}}e^{\frac{1500}{x}}}{x^{\frac{1}{2}}} + \frac{0.0015}{(0.0001x + 1)} - \frac{0.7323}{x}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{-0.0364835031213(-e^{\frac{-1500}{x}} + 1)^{\frac{5}{2}}e^{\frac{1500}{x}}}{x^{\frac{1}{2}}} + \frac{0.0015}{(0.0001x + 1)} - \frac{0.7323}{x}\right)}{dx}\\=&\frac{-0.0364835031213(2.5(-e^{\frac{-1500}{x}} + 1)^{\frac{3}{2}}(\frac{-e^{\frac{-1500}{x}}*-1500*-1}{x^{2}} + 0))e^{\frac{1500}{x}}}{x^{\frac{1}{2}}} - \frac{0.0364835031212739(-e^{\frac{-1500}{x}} + 1)^{\frac{5}{2}}*-0.5e^{\frac{1500}{x}}}{x^{\frac{3}{2}}} - \frac{0.0364835031212739(-e^{\frac{-1500}{x}} + 1)^{\frac{5}{2}}e^{\frac{1500}{x}}*1500*-1}{x^{\frac{1}{2}}x^{2}} + 0.0015(\frac{-(0.0001 + 0)}{(0.0001x + 1)^{2}}) - \frac{0.7323*-1}{x^{2}}\\=&\frac{136.813136704777(-e^{\frac{-1500}{x}} + 1)^{\frac{3}{2}}e^{\frac{-1500}{x}}e^{\frac{1500}{x}}}{x^{\frac{5}{2}}} + \frac{0.0182417515606369(-e^{\frac{-1500}{x}} + 1)^{\frac{5}{2}}e^{\frac{1500}{x}}}{x^{\frac{3}{2}}} + \frac{54.7252546819108(-e^{\frac{-1500}{x}} + 1)^{\frac{5}{2}}e^{\frac{1500}{x}}}{x^{\frac{5}{2}}} - \frac{0.00000015}{(0.0001x + 1)(0.0001x + 1)} + \frac{0.7323}{x^{2}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!