There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ -{x}^{3}{\frac{1}{(x - 1)}}^{2} + \frac{3{x}^{2}}{(x - 1)} + x{\frac{1}{(x - 1)}}^{2} - {\frac{1}{(x - 1)}}^{2} - \frac{1}{(x - 1)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{-x^{3}}{(x - 1)^{2}} + \frac{3x^{2}}{(x - 1)} + \frac{x}{(x - 1)^{2}} - \frac{1}{(x - 1)^{2}} - \frac{1}{(x - 1)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{-x^{3}}{(x - 1)^{2}} + \frac{3x^{2}}{(x - 1)} + \frac{x}{(x - 1)^{2}} - \frac{1}{(x - 1)^{2}} - \frac{1}{(x - 1)}\right)}{dx}\\=&-(\frac{-2(1 + 0)}{(x - 1)^{3}})x^{3} - \frac{3x^{2}}{(x - 1)^{2}} + 3(\frac{-(1 + 0)}{(x - 1)^{2}})x^{2} + \frac{3*2x}{(x - 1)} + (\frac{-2(1 + 0)}{(x - 1)^{3}})x + \frac{1}{(x - 1)^{2}} - (\frac{-2(1 + 0)}{(x - 1)^{3}}) - (\frac{-(1 + 0)}{(x - 1)^{2}})\\=&\frac{2x^{3}}{(x - 1)^{3}} - \frac{6x^{2}}{(x - 1)^{2}} + \frac{6x}{(x - 1)} - \frac{2x}{(x - 1)^{3}} + \frac{2}{(x - 1)^{3}} + \frac{2}{(x - 1)^{2}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!