There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{50(1 + x)}{((\frac{9}{2} - (1 + x)(1 + x)) - \frac{50(2 - x)}{((\frac{9}{2} - (2 - x)(1 + x)))})}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{50x}{(\frac{50x}{(x^{2} - x + \frac{5}{2})} - x^{2} - 2x - \frac{100}{(x^{2} - x + \frac{5}{2})} + \frac{7}{2})} + \frac{50}{(\frac{50x}{(x^{2} - x + \frac{5}{2})} - x^{2} - 2x - \frac{100}{(x^{2} - x + \frac{5}{2})} + \frac{7}{2})}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{50x}{(\frac{50x}{(x^{2} - x + \frac{5}{2})} - x^{2} - 2x - \frac{100}{(x^{2} - x + \frac{5}{2})} + \frac{7}{2})} + \frac{50}{(\frac{50x}{(x^{2} - x + \frac{5}{2})} - x^{2} - 2x - \frac{100}{(x^{2} - x + \frac{5}{2})} + \frac{7}{2})}\right)}{dx}\\=&50(\frac{-(50(\frac{-(2x - 1 + 0)}{(x^{2} - x + \frac{5}{2})^{2}})x + \frac{50}{(x^{2} - x + \frac{5}{2})} - 2x - 2 - 100(\frac{-(2x - 1 + 0)}{(x^{2} - x + \frac{5}{2})^{2}}) + 0)}{(\frac{50x}{(x^{2} - x + \frac{5}{2})} - x^{2} - 2x - \frac{100}{(x^{2} - x + \frac{5}{2})} + \frac{7}{2})^{2}})x + \frac{50}{(\frac{50x}{(x^{2} - x + \frac{5}{2})} - x^{2} - 2x - \frac{100}{(x^{2} - x + \frac{5}{2})} + \frac{7}{2})} + 50(\frac{-(50(\frac{-(2x - 1 + 0)}{(x^{2} - x + \frac{5}{2})^{2}})x + \frac{50}{(x^{2} - x + \frac{5}{2})} - 2x - 2 - 100(\frac{-(2x - 1 + 0)}{(x^{2} - x + \frac{5}{2})^{2}}) + 0)}{(\frac{50x}{(x^{2} - x + \frac{5}{2})} - x^{2} - 2x - \frac{100}{(x^{2} - x + \frac{5}{2})} + \frac{7}{2})^{2}})\\=&\frac{5000x^{3}}{(\frac{50x}{(x^{2} - x + \frac{5}{2})} - x^{2} - 2x - \frac{100}{(x^{2} - x + \frac{5}{2})} + \frac{7}{2})^{2}(x^{2} - x + \frac{5}{2})^{2}} - \frac{7500x^{2}}{(\frac{50x}{(x^{2} - x + \frac{5}{2})} - x^{2} - 2x - \frac{100}{(x^{2} - x + \frac{5}{2})} + \frac{7}{2})^{2}(x^{2} - x + \frac{5}{2})^{2}} - \frac{2500x}{(\frac{50x}{(x^{2} - x + \frac{5}{2})} - x^{2} - 2x - \frac{100}{(x^{2} - x + \frac{5}{2})} + \frac{7}{2})^{2}(x^{2} - x + \frac{5}{2})} + \frac{100x^{2}}{(\frac{50x}{(x^{2} - x + \frac{5}{2})} - x^{2} - 2x - \frac{100}{(x^{2} - x + \frac{5}{2})} + \frac{7}{2})^{2}} + \frac{200x}{(\frac{50x}{(x^{2} - x + \frac{5}{2})} - x^{2} - 2x - \frac{100}{(x^{2} - x + \frac{5}{2})} + \frac{7}{2})^{2}} - \frac{7500x}{(\frac{50x}{(x^{2} - x + \frac{5}{2})} - x^{2} - 2x - \frac{100}{(x^{2} - x + \frac{5}{2})} + \frac{7}{2})^{2}(x^{2} - x + \frac{5}{2})^{2}} - \frac{2500}{(\frac{50x}{(x^{2} - x + \frac{5}{2})} - x^{2} - 2x - \frac{100}{(x^{2} - x + \frac{5}{2})} + \frac{7}{2})^{2}(x^{2} - x + \frac{5}{2})} + \frac{5000}{(\frac{50x}{(x^{2} - x + \frac{5}{2})} - x^{2} - 2x - \frac{100}{(x^{2} - x + \frac{5}{2})} + \frac{7}{2})^{2}(x^{2} - x + \frac{5}{2})^{2}} + \frac{50}{(\frac{50x}{(x^{2} - x + \frac{5}{2})} - x^{2} - 2x - \frac{100}{(x^{2} - x + \frac{5}{2})} + \frac{7}{2})} + \frac{100}{(\frac{50x}{(x^{2} - x + \frac{5}{2})} - x^{2} - 2x - \frac{100}{(x^{2} - x + \frac{5}{2})} + \frac{7}{2})^{2}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!