There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {(\frac{80}{481} - \frac{160x}{481})}^{2} + 2{(\frac{-80}{481} + \frac{320x}{481})}^{2} + {(\frac{40}{481} - \frac{80x}{481})}^{2}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{6400}{6253}x^{2} - \frac{134400}{231361}x + \frac{1600}{17797}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{6400}{6253}x^{2} - \frac{134400}{231361}x + \frac{1600}{17797}\right)}{dx}\\=&\frac{6400}{6253}*2x - \frac{134400}{231361} + 0\\=&\frac{12800x}{6253} - \frac{134400}{231361}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!