There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ 1680sin({x}^{2}) + 13440{x}^{2}cos({x}^{2}) - 13440{x}^{4}sin({x}^{2}) - 3584{x}^{6}cos({x}^{2}) + 256{x}^{8}sin({x}^{2})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = 1680sin(x^{2}) + 13440x^{2}cos(x^{2}) - 13440x^{4}sin(x^{2}) - 3584x^{6}cos(x^{2}) + 256x^{8}sin(x^{2})\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( 1680sin(x^{2}) + 13440x^{2}cos(x^{2}) - 13440x^{4}sin(x^{2}) - 3584x^{6}cos(x^{2}) + 256x^{8}sin(x^{2})\right)}{dx}\\=&1680cos(x^{2})*2x + 13440*2xcos(x^{2}) + 13440x^{2}*-sin(x^{2})*2x - 13440*4x^{3}sin(x^{2}) - 13440x^{4}cos(x^{2})*2x - 3584*6x^{5}cos(x^{2}) - 3584x^{6}*-sin(x^{2})*2x + 256*8x^{7}sin(x^{2}) + 256x^{8}cos(x^{2})*2x\\=&30240xcos(x^{2}) - 80640x^{3}sin(x^{2}) - 48384x^{5}cos(x^{2}) + 9216x^{7}sin(x^{2}) + 512x^{9}cos(x^{2})\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!