There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ 30240xcos({x}^{2}) - 80640{x}^{3}sin({x}^{2}) - 48384{x}^{5}cos({x}^{2}) + 9216{x}^{7}sin({x}^{2}) + 512{x}^{9}cos({x}^{2})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = 30240xcos(x^{2}) - 80640x^{3}sin(x^{2}) - 48384x^{5}cos(x^{2}) + 9216x^{7}sin(x^{2}) + 512x^{9}cos(x^{2})\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( 30240xcos(x^{2}) - 80640x^{3}sin(x^{2}) - 48384x^{5}cos(x^{2}) + 9216x^{7}sin(x^{2}) + 512x^{9}cos(x^{2})\right)}{dx}\\=&30240cos(x^{2}) + 30240x*-sin(x^{2})*2x - 80640*3x^{2}sin(x^{2}) - 80640x^{3}cos(x^{2})*2x - 48384*5x^{4}cos(x^{2}) - 48384x^{5}*-sin(x^{2})*2x + 9216*7x^{6}sin(x^{2}) + 9216x^{7}cos(x^{2})*2x + 512*9x^{8}cos(x^{2}) + 512x^{9}*-sin(x^{2})*2x\\=&30240cos(x^{2}) - 302400x^{2}sin(x^{2}) - 403200x^{4}cos(x^{2}) + 161280x^{6}sin(x^{2}) + 23040x^{8}cos(x^{2}) - 1024x^{10}sin(x^{2})\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!