There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ -665280xsin({x}^{2}) - 2217600{x}^{3}cos({x}^{2}) + 1774080{x}^{5}sin({x}^{2}) + 506880{x}^{7}cos({x}^{2}) - 56320{x}^{9}sin({x}^{2}) - 2048{x}^{11}cos({x}^{2})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = -665280xsin(x^{2}) - 2217600x^{3}cos(x^{2}) + 1774080x^{5}sin(x^{2}) + 506880x^{7}cos(x^{2}) - 56320x^{9}sin(x^{2}) - 2048x^{11}cos(x^{2})\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( -665280xsin(x^{2}) - 2217600x^{3}cos(x^{2}) + 1774080x^{5}sin(x^{2}) + 506880x^{7}cos(x^{2}) - 56320x^{9}sin(x^{2}) - 2048x^{11}cos(x^{2})\right)}{dx}\\=&-665280sin(x^{2}) - 665280xcos(x^{2})*2x - 2217600*3x^{2}cos(x^{2}) - 2217600x^{3}*-sin(x^{2})*2x + 1774080*5x^{4}sin(x^{2}) + 1774080x^{5}cos(x^{2})*2x + 506880*7x^{6}cos(x^{2}) + 506880x^{7}*-sin(x^{2})*2x - 56320*9x^{8}sin(x^{2}) - 56320x^{9}cos(x^{2})*2x - 2048*11x^{10}cos(x^{2}) - 2048x^{11}*-sin(x^{2})*2x\\=&-665280sin(x^{2}) - 7983360x^{2}cos(x^{2}) + 13305600x^{4}sin(x^{2}) + 7096320x^{6}cos(x^{2}) - 1520640x^{8}sin(x^{2}) - 135168x^{10}cos(x^{2}) + 4096x^{12}sin(x^{2})\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!